enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Proximal gradient method - Wikipedia

    en.wikipedia.org/wiki/Proximal_gradient_method

    Proximal gradient methods are a generalized form of projection used to solve non-differentiable convex optimization problems. A comparison between the iterates of the projected gradient method (in red) and the Frank-Wolfe method (in green). Many interesting problems can be formulated as convex optimization problems of the form

  3. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    A comparison of the convergence of gradient descent with optimal step size (in green) and conjugate vector (in red) for minimizing a quadratic function associated with a given linear system. Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2).

  4. Nonlinear conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_conjugate...

    There, both step direction and length are computed from the gradient as the solution of a linear system of equations, with the coefficient matrix being the exact Hessian matrix (for Newton's method proper) or an estimate thereof (in the quasi-Newton methods, where the observed change in the gradient during the iterations is used to update the ...

  5. Biconjugate gradient stabilized method - Wikipedia

    en.wikipedia.org/wiki/Biconjugate_gradient...

    It is a variant of the biconjugate gradient method (BiCG) and has faster and smoother convergence than the original BiCG as well as other variants such as the conjugate gradient squared method (CGS). It is a Krylov subspace method. Unlike the original BiCG method, it doesn't require multiplication by the transpose of the system matrix.

  6. GPOPS-II - Wikipedia

    en.wikipedia.org/wiki/GPOPS-II

    GPOPS-II [3] is designed to solve multiple-phase optimal control problems of the following mathematical form (where is the number of phases): = ((), …, ()) subject to the dynamic constraints

  7. Levenberg–Marquardt algorithm - Wikipedia

    en.wikipedia.org/wiki/Levenberg–Marquardt...

    The LMA interpolates between the Gauss–Newton algorithm (GNA) and the method of gradient descent. The LMA is more robust than the GNA, which means that in many cases it finds a solution even if it starts very far off the final minimum. For well-behaved functions and reasonable starting parameters, the LMA tends to be slower than the GNA.

  8. Numerical methods for ordinary differential equations

    en.wikipedia.org/wiki/Numerical_methods_for...

    The most commonly used method for numerically solving BVPs in one dimension is called the Finite Difference Method. [3] This method takes advantage of linear combinations of point values to construct finite difference coefficients that describe derivatives of the function.

  9. CMA-ES - Wikipedia

    en.wikipedia.org/wiki/CMA-ES

    on low-dimensional functions, say <, for example by the downhill simplex method or surrogate-based methods (like kriging with expected improvement); on separable functions without or with only negligible dependencies between the design variables in particular in the case of multi-modality or large dimension, for example by differential evolution ;