Search results
Results from the WOW.Com Content Network
While foregut fermentation is generally considered more efficient, and monogastric animals cannot digest cellulose as efficiently as ruminants, [5] hindgut fermentation allows animals to consume small amounts of low-quality forage all day long and thus survive in conditions where ruminants might not be able to obtain nutrition adequate for their needs.
Arthropod cuticle is a biological composite material, consisting of two main portions: fibrous chains of alpha-chitin within a matrix of silk-like and globular proteins, of which the best-known is the rubbery protein called resilin. The relative abundance of these two main components varies from approximately 50/50 to 80/20 chitin protein, with ...
Mineralization can be subdivided into different categories depending on the following: the organisms or processes that create chemical conditions necessary for mineral formation, the origin of the substrate at the site of mineral precipitation, and the degree of control that the substrate has on crystal morphology, composition, and growth. [8]
Since the environment inside a rumen is anaerobic, most of these microbial species are obligate or facultative anaerobes that can decompose complex plant material, such as cellulose, hemicellulose, starch, and proteins. The hydrolysis of cellulose results in sugars, which are further fermented to acetate, lactate, propionate, butyrate, carbon ...
Cellulose was discovered in 1838 by the French chemist Anselme Payen, who isolated it from plant matter and determined its chemical formula. [3] [11] [12] Cellulose was used to produce the first successful thermoplastic polymer, celluloid, by Hyatt Manufacturing Company in 1870.
Cross-sectional view of the structures that can be formed by phospholipids in an aqueous solution. A biological membrane, biomembrane or cell membrane is a selectively permeable membrane that separates the interior of a cell from the external environment or creates intracellular compartments by serving as a boundary between one part of the cell and another.
A large percentage of herbivores also have mutualistic gut flora made up of bacteria and protozoans that help to degrade the cellulose in plants, [1] whose heavily cross-linking polymer structure makes it far more difficult to digest than the protein- and fat-rich animal tissues that carnivores eat.
The formation of diospyrobezoars from persimmons is due to a chemical reaction between stomach acid and phlobatannin contained in the persimmon. [9] Tannin and shibuol found in the skin of unripe persimmons reacts with gastric acid and forms a coagulum. This structure then accumulates cellulose, hemicellulose and protein. [5]