enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Monogastric - Wikipedia

    en.wikipedia.org/wiki/Monogastric

    However, their ability to extract energy from cellulose digestion is less efficient than in ruminants. [2] Herbivores digest cellulose by microbial fermentation. Monogastric herbivores which can digest cellulose nearly as well as ruminants are called hindgut fermenters, while ruminants are called foregut fermenters. [3]

  3. Hindgut fermentation - Wikipedia

    en.wikipedia.org/wiki/Hindgut_fermentation

    While foregut fermentation is generally considered more efficient, and monogastric animals cannot digest cellulose as efficiently as ruminants, [5] hindgut fermentation allows animals to consume small amounts of low-quality forage all day long and thus survive in conditions where ruminants might not be able to obtain nutrition adequate for their needs.

  4. Primary nutritional groups - Wikipedia

    en.wikipedia.org/wiki/Primary_nutritional_groups

    The sources of energy can be light or chemical compounds; the sources of carbon can be of organic or inorganic origin. [ 1 ] The terms aerobic respiration , anaerobic respiration and fermentation ( substrate-level phosphorylation ) do not refer to primary nutritional groups, but simply reflect the different use of possible electron acceptors in ...

  5. Ruminant - Wikipedia

    en.wikipedia.org/wiki/Ruminant

    Since the environment inside a rumen is anaerobic, most of these microbial species are obligate or facultative anaerobes that can decompose complex plant material, such as cellulose, hemicellulose, starch, and proteins. The hydrolysis of cellulose results in sugars, which are further fermented to acetate, lactate, propionate, butyrate, carbon ...

  6. Animal nutrition - Wikipedia

    en.wikipedia.org/wiki/Animal_nutrition

    Proteins are the basis of many animal body structures (e.g. muscles, skin, and hair). They also form the enzymes which control chemical reactions throughout the body. Each molecule is composed of amino acids which are characterized by the inclusion of nitrogen and sometimes sulfur.

  7. Metabolism - Wikipedia

    en.wikipedia.org/wiki/Metabolism

    Metabolism (/ m ə ˈ t æ b ə l ɪ z ə m /, from Greek: μεταβολή metabolē, "change") is the set of life-sustaining chemical reactions in organisms.The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the conversion of food to building blocks of proteins, lipids, nucleic acids, and some carbohydrates; and the ...

  8. Fungal extracellular enzyme activity - Wikipedia

    en.wikipedia.org/wiki/Fungal_extracellular...

    These enzymes degrade complex organic matter such as cellulose and hemicellulose into simple sugars that enzyme-producing organisms use as a source of carbon, energy, and nutrients. [2] Grouped as hydrolases, lyases, oxidoreductases and transferases, [1] these extracellular enzymes control soil enzyme activity through efficient degradation of ...

  9. Cellulase - Wikipedia

    en.wikipedia.org/wiki/Cellulase

    Ribbon representation of the Streptomyces lividans β-1,4-endoglucanase catalytic domain - an example from the family 12 glycoside hydrolases [1]. Cellulase (EC 3.2.1.4; systematic name 4-β-D-glucan 4-glucanohydrolase) is any of several enzymes produced chiefly by fungi, bacteria, and protozoans that catalyze cellulolysis, the decomposition of cellulose and of some related polysaccharides: