Search results
Results from the WOW.Com Content Network
A quadrilateral is a kite if and only if any one of the following conditions is true: The four sides can be split into two pairs of adjacent equal-length sides. [7] One diagonal crosses the midpoint of the other diagonal at a right angle, forming its perpendicular bisector. [9] (In the concave case, the line through one of the diagonals bisects ...
Bretschneider's formula generalizes Brahmagupta's formula for the area of a cyclic quadrilateral, which in turn generalizes Heron's formula for the area of a triangle.. The trigonometric adjustment in Bretschneider's formula for non-cyclicality of the quadrilateral can be rewritten non-trigonometrically in terms of the sides and the diagonals e and f to give [2] [3]
An arbitrary quadrilateral and its diagonals. Bases of similar triangles are parallel to the blue diagonal. Ditto for the red diagonal. The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A ...
Kites are examples of ex-tangential quadrilaterals. Parallelograms (which include squares, rhombi, and rectangles) can be considered ex-tangential quadrilaterals with infinite exradius since they satisfy the characterizations in the next section, but the excircle cannot be tangent to both pairs of extensions of opposite sides (since they are parallel). [4]
A complete quadrangle (at left) and a complete quadrilateral (at right).. In mathematics, specifically in incidence geometry and especially in projective geometry, a complete quadrangle is a system of geometric objects consisting of any four points in a plane, no three of which are on a common line, and of the six lines connecting the six pairs of points.
A quadric quadrilateral is a convex quadrilateral whose four vertices all lie on the perimeter of a square. [7] A diametric quadrilateral is a cyclic quadrilateral having one of its sides as a diameter of the circumcircle. [8] A Hjelmslev quadrilateral is a quadrilateral with two right angles at opposite vertices. [9]
Ptolemy's theorem is a relation among these lengths in a cyclic quadrilateral. = + In Euclidean geometry, Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral (a quadrilateral whose vertices lie on a common circle).
A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as d approaches zero, a cyclic quadrilateral converges into a cyclic triangle (all triangles are cyclic), and Brahmagupta's formula simplifies to Heron's formula. If the semiperimeter is not used, Brahmagupta's formula is