Search results
Results from the WOW.Com Content Network
The shrink–swell capacity of soils refers to the extent certain clay minerals will expand when wet and retract when dry. Soil with a high shrink–swell capacity is problematic and is known as shrink–swell soil, or expansive soil . [ 1 ]
Expansive clay is a clay soil that is prone to large volume changes (swelling and shrinking) that are directly related to changes in water content. [1] Soils with a high content of expansive minerals can form deep cracks in drier seasons or years; such soils are called vertisols.
The Atterberg limits are a basic measure of the critical water contents of a fine-grained soil: its shrinkage limit, plastic limit, and liquid limit.. Depending on its water content, soil may appear in one of four states: solid, semi-solid, plastic and liquid.
Map of the United States showing what percentage of the soil in a given area is classified as an Ultisol-type soil. The great majority of the land area classified in the highest category (75%-or-greater Ultisol) lies in the South and overlays with the Piedmont Plateau, which runs as a diagonal line through the South from southeast (in Alabama) to northwest (up into parts of Maryland).
Example of a hazard map. A hazard map is a map that highlights areas that are affected by or are vulnerable to a particular hazard. They are typically created for natural hazards, such as earthquakes, volcanoes, landslides, flooding and tsunamis. Hazard maps help prevent serious damage and deaths. [1]
The individual crystals of montmorillonite clay are not tightly bound hence water can intervene, causing the clay to swell, hence montmorillonite is a characteristic component of swelling soil. The water content of montmorillonite is variable and it increases greatly in volume when it absorbs water.
It is a limited-expansion clay with a medium shrink–swell capacity. Vermiculite has a high cation-exchange capacity (CEC) at 100–150 meq/100 g. Vermiculite clays are weathered micas in which the potassium ions between the molecular sheets are replaced by magnesium and iron ions.
The 'bathtub curve' hazard function (blue, upper solid line) is a combination of a decreasing hazard of early failure (red dotted line) and an increasing hazard of wear-out failure (yellow dotted line), plus some constant hazard of random failure (green, lower solid line). The bathtub curve is a particular shape of a failure rate graph.