Search results
Results from the WOW.Com Content Network
A basic property about an absorbing Markov chain is the expected number of visits to a transient state j starting from a transient state i (before being absorbed). This can be established to be given by the (i, j) entry of so-called fundamental matrix N, obtained by summing Q k for all k (from 0 to ∞).
In mathematics, a stochastic matrix is a square matrix used to describe the transitions of a Markov chain. Each of its entries is a nonnegative real number representing a probability . [ 1 ] [ 2 ] : 10 It is also called a probability matrix , transition matrix , substitution matrix , or Markov matrix .
A game of snakes and ladders or any other game whose moves are determined entirely by dice is a Markov chain, indeed, an absorbing Markov chain. This is in contrast to card games such as blackjack, where the cards represent a 'memory' of the past moves. To see the difference, consider the probability for a certain event in the game.
A Markov matrix that is compatible with the adjacency matrix can then provide a measure on the subshift. Many chaotic dynamical systems are isomorphic to topological Markov chains; examples include diffeomorphisms of closed manifolds , the Prouhet–Thue–Morse system , the Chacon system , sofic systems , context-free systems and block-coding ...
Fundamental matrix (absorbing Markov chain) This page was last edited on 27 February 2022, at 15:25 (UTC). Text is available under the Creative Commons Attribution ...
The transition matrix is characterized entirely by its upper-left block . Definition. A distribution on {,,,...} is a discrete phase-type distribution if it is the distribution of the first passage time to the absorbing state of a terminating Markov chain with finitely many states.
Consider a continuous-time Markov process with m + 1 states, where m ≥ 1, such that the states 1,...,m are transient states and state 0 is an absorbing state. Further, let the process have an initial probability of starting in any of the m + 1 phases given by the probability vector (α 0,α) where α 0 is a scalar and α is a 1 × m vector.
The simplest Markov model is the Markov chain.It models the state of a system with a random variable that changes through time. In this context, the Markov property indicates that the distribution for this variable depends only on the distribution of a previous state.