Search results
Results from the WOW.Com Content Network
If the magnetic field is constant, the magnetic flux passing through a surface of vector area S is = = , where B is the magnitude of the magnetic field (the magnetic flux density) having the unit of Wb/m 2 , S is the area of the surface, and θ is the angle between the magnetic field lines and the normal (perpendicular) to S.
Carl Friedrich Gauß in 1828, aged 50 years old. The gauss (symbol: G, sometimes Gs) is a unit of measurement of magnetic induction, also known as magnetic flux density.The unit is part of the Gaussian system of units, which inherited it from the older centimetre–gram–second electromagnetic units (CGS-EMU) system.
magnetic flux density, magnetic induction: tesla: ... Φ, Φ M, Φ B magnetic flux: weber: Wb = V⋅s kg⋅m 2 ⋅s −2 ⋅A −1: H magnetic field strength ampere ...
The tesla (symbol: T) is the unit of magnetic flux density (also called magnetic B-field strength) in the International System of Units (SI).. One tesla is equal to one weber per square metre.
The magnetic flux density does not measure how strong a magnetic field is, but only how strong the magnetic flux is in a given point or at a given distance (usually right above the magnet's surface). For the intrinsic order of magnitude of magnetic fields, see: Orders of magnitude (magnetic moment). Note:
In electromagnetics, the term magnetic field is used for two distinct but closely related vector fields denoted by the symbols B and H. In the International System of Units, the unit of B, magnetic flux density, is the tesla (in SI base units: kilogram per second squared per ampere), [5]: 21 which is equivalent to newton per meter
In 1930, TC1 decided that the magnetic field strength (H) is of a different nature from the magnetic flux density (B), [9] and took up the question of naming the units for these fields and related quantities, among them the integral of magnetic flux density. [citation needed]
The magnetic moment of an object is an intrinsic property and does not change with distance, and thus can be used to measure "how strong" a magnet is. For example, Earth possesses an enormous magnetic moment, however we are very distant from its center and experience only a tiny magnetic flux density (measured in tesla ) on its surface.