enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2). In mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix is positive-semidefinite.

  3. Multigrid method - Wikipedia

    en.wikipedia.org/wiki/Multigrid_method

    In numerical analysis, a multigrid method (MG method) is an algorithm for solving differential equations using a hierarchy of discretizations. They are an example of a class of techniques called multiresolution methods , very useful in problems exhibiting multiple scales of behavior.

  4. Biconjugate gradient stabilized method - Wikipedia

    en.wikipedia.org/wiki/Biconjugate_gradient...

    Preconditioners are usually used to accelerate convergence of iterative methods. To solve a linear system Ax = b with a preconditioner K = K 1 K 2 ≈ A, preconditioned BiCGSTAB starts with an initial guess x 0 and proceeds as follows: r 0 = b − Ax 0; Choose an arbitrary vector r̂ 0 such that (r̂ 0, r 0) ≠ 0, e.g., r̂ 0 = r 0; ρ 0 ...

  5. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    The step size is =. The same illustration for = The midpoint method converges faster than the Euler method, as .. Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs).

  6. Explicit and implicit methods - Wikipedia

    en.wikipedia.org/wiki/Explicit_and_implicit_methods

    For such problems, to achieve given accuracy, it takes much less computational time to use an implicit method with larger time steps, even taking into account that one needs to solve an equation of the form (1) at each time step. That said, whether one should use an explicit or implicit method depends upon the problem to be solved.

  7. Rosenbrock methods - Wikipedia

    en.wikipedia.org/wiki/Rosenbrock_methods

    The idea of Rosenbrock search is also used to initialize some root-finding routines, such as fzero (based on Brent's method) in Matlab. Rosenbrock search is a form of derivative-free search but may perform better on functions with sharp ridges. [6] The method often identifies such a ridge which, in many applications, leads to a solution. [7]

  8. Relaxation (iterative method) - Wikipedia

    en.wikipedia.org/wiki/Relaxation_(iterative_method)

    Relaxation methods are used to solve the linear equations resulting from a discretization of the differential equation, for example by finite differences. [ 2 ] [ 3 ] [ 4 ] Iterative relaxation of solutions is commonly dubbed smoothing because with certain equations, such as Laplace's equation , it resembles repeated application of a local ...

  9. Pseudo-spectral method - Wikipedia

    en.wikipedia.org/wiki/Pseudo-spectral_method

    Pseudo-spectral methods, [1] also known as discrete variable representation (DVR) methods, are a class of numerical methods used in applied mathematics and scientific computing for the solution of partial differential equations.