enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    The logarithm of a complex number is thus a multi-valued function, because φ is multi-valued. Finally, the other exponential law =, which can be seen to hold for all integers k, together with Euler's formula, implies several trigonometric identities, as well as de Moivre's formula.

  3. Log–log plot - Wikipedia

    en.wikipedia.org/wiki/Loglog_plot

    A loglog plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).

  4. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    The identities of logarithms can be used to approximate large numbers. Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 ...

  5. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The exponential function can be extended to a function which gives a complex number as e z for any arbitrary complex number z; simply use the infinite series with x =z complex. This exponential function can be inverted to form a complex logarithm that exhibits most of the properties of the ordinary logarithm.

  6. Complex logarithm - Wikipedia

    en.wikipedia.org/wiki/Complex_logarithm

    Such complex logarithm functions are analogous to the real logarithm function: >, which is the inverse of the real exponential function and hence satisfies e ln x = x for all positive real numbers x. Complex logarithm functions can be constructed by explicit formulas involving real-valued functions, by integration of 1 / z {\displaystyle 1/z ...

  7. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    In mathematics, the logarithm to base b is the inverse function of exponentiation with base b. That means that the logarithm of a number x to the base b is the exponent to which b must be raised to produce x. For example, since 1000 = 10 3, the logarithm base of 1000 is 3, or log 10 (1000) = 3.

  8. Logarithm of a matrix - Wikipedia

    en.wikipedia.org/wiki/Logarithm_of_a_matrix

    The exponential of a matrix A is defined by =!. Given a matrix B, another matrix A is said to be a matrix logarithm of B if e A = B.. Because the exponential function is not bijective for complex numbers (e.g. = =), numbers can have multiple complex logarithms, and as a consequence of this, some matrices may have more than one logarithm, as explained below.

  9. e (mathematical constant) - Wikipedia

    en.wikipedia.org/wiki/E_(mathematical_constant)

    The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .