Search results
Results from the WOW.Com Content Network
Sequence alignment can also reveal conserved domains and motifs. One motivation for local alignment is the difficulty of obtaining correct alignments in regions of low similarity between distantly related biological sequences, because mutations have added too much 'noise' over evolutionary time to allow for a meaningful comparison of those regions.
Progressive-iterative alignment: Both: Local or global: T. Wheeler and J. Kececioglu: 2007 (latest stable 2013, latest beta 2016) Pecan Probabilistic-consistency: DNA: Global: B. Paten et al. 2008: Phylo: A human computing framework for comparative genomics to solve multiple alignment: Nucleotides: Local or global: McGill Bioinformatics: 2010 ...
In bioinformatics, BLAST (basic local alignment search tool) [3] is an algorithm and program for comparing primary biological sequence information, such as the amino-acid sequences of proteins or the nucleotides of DNA and/or RNA sequences.
Local alignments are more useful for dissimilar sequences that are suspected to contain regions of similarity or similar sequence motifs within their larger sequence context. The Smith–Waterman algorithm is a general local alignment method based on the same dynamic programming scheme but with additional choices to start and end at any place. [4]
In bioinformatics, the BLOSUM (BLOcks SUbstitution Matrix) matrix is a substitution matrix used for sequence alignment of proteins. BLOSUM matrices are used to score alignments between evolutionarily divergent protein sequences. They are based on local alignments. BLOSUM matrices were first introduced in a paper by Steven Henikoff and Jorja ...
In bioinformatics, sequence analysis is the process of subjecting a DNA, RNA or peptide sequence to any of a wide range of analytical methods to understand its features, function, structure, or evolution. It can be performed on the entire genome, transcriptome or proteome of an organism, and can also involve only selected segments or regions ...
BLAT (BLAST-like alignment tool) is a pairwise sequence alignment algorithm that was developed by Jim Kent at the University of California Santa Cruz (UCSC) in the early 2000s to assist in the assembly and annotation of the human genome. [1]
Genetic sequence alignment - In bioinformatics, gaps are used to account for genetic mutations occurring from insertions or deletions in the sequence, sometimes referred to as indels. Insertions or deletions can occur due to single mutations, unbalanced crossover in meiosis , slipped strand mispairing , and chromosomal translocation . [ 2 ]