enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Block walking - Wikipedia

    en.wikipedia.org/wiki/Block_walking

    In combinatorial mathematics, block walking is a method useful in thinking about sums of combinations graphically as "walks" on Pascal's triangle.As the name suggests, block walking problems involve counting the number of ways an individual can walk from one corner A of a city block to another corner B of another city block given restrictions on the number of blocks the person may walk, the ...

  3. Pascal's triangle - Wikipedia

    en.wikipedia.org/wiki/Pascal's_triangle

    In mathematics, Pascal's triangle is an infinite triangular array of the binomial coefficients which play a crucial role in probability theory, combinatorics, and algebra.In much of the Western world, it is named after the French mathematician Blaise Pascal, although other mathematicians studied it centuries before him in Persia, [1] India, [2] China, Germany, and Italy.

  4. List of algorithms - Wikipedia

    en.wikipedia.org/wiki/List_of_algorithms

    An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.

  5. Pascal's simplex - Wikipedia

    en.wikipedia.org/wiki/Pascal's_simplex

    The first five layers of Pascal's 3-simplex (Pascal's pyramid). Each face (orange grid) is Pascal's 2-simplex (Pascal's triangle). Arrows show derivation of two example terms. In mathematics, Pascal's simplex is a generalisation of Pascal's triangle into arbitrary number of dimensions, based on the multinomial theorem.

  6. Pascal's pyramid - Wikipedia

    en.wikipedia.org/wiki/Pascal's_pyramid

    Pascal's pyramid's first five layers. Each face (orange grid) is Pascal's triangle. Arrows show derivation of two example terms. In mathematics, Pascal's pyramid is a three-dimensional arrangement of the trinomial numbers, which are the coefficients of the trinomial expansion and the trinomial distribution. [1]

  7. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    One may show by induction that F(n) counts the number of ways that a n × 1 strip of squares may be covered by 2 × 1 and 1 × 1 tiles. On the other hand, if such a tiling uses exactly k of the 2 × 1 tiles, then it uses n − 2k of the 1 × 1 tiles, and so uses n − k tiles total.

  8. Hockey-stick identity - Wikipedia

    en.wikipedia.org/wiki/Hockey-stick_identity

    Pascal's triangle, rows 0 through 7. The hockey stick identity confirms, for example: for n =6, r =2: 1+3+6+10+15=35. In combinatorics , the hockey-stick identity , [ 1 ] Christmas stocking identity , [ 2 ] boomerang identity , Fermat's identity or Chu's Theorem , [ 3 ] states that if n ≥ r ≥ 0 {\displaystyle n\geq r\geq 0} are integers, then

  9. Pascal matrix - Wikipedia

    en.wikipedia.org/wiki/Pascal_matrix

    The matrices have the pleasing relationship S n = L n U n. From this it is easily seen that all three matrices have determinant 1, as the determinant of a triangular matrix is simply the product of its diagonal elements, which are all 1 for both L n and U n. In other words, matrices S n, L n, and U n are unimodular, with L n and U n having trace n.