enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear congruential generator - Wikipedia

    en.wikipedia.org/wiki/Linear_congruential_generator

    A structure similar to LCGs, but not equivalent, is the multiple-recursive generator: X n = (a 1 X n1 + a 2 X n2 + ··· + a k X n−k) mod m for k ≥ 2. With a prime modulus, this can generate periods up to m k −1, so is a useful extension of the LCG structure to larger periods.

  3. List of algorithms - Wikipedia

    en.wikipedia.org/wiki/List_of_algorithms

    An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.

  4. Singmaster's conjecture - Wikipedia

    en.wikipedia.org/wiki/Singmaster's_conjecture

    Singmaster's conjecture is a conjecture in combinatorial number theory, named after the British mathematician David Singmaster who proposed it in 1971. It says that there is a finite upper bound on the multiplicities of entries in Pascal's triangle (other than the number 1, which appears infinitely many times).

  5. Hockey-stick identity - Wikipedia

    en.wikipedia.org/wiki/Hockey-stick_identity

    Pascal's triangle, rows 0 through 7. The hockey stick identity confirms, for example: for n =6, r =2: 1+3+6+10+15=35. In combinatorics , the hockey-stick identity , [ 1 ] Christmas stocking identity , [ 2 ] boomerang identity , Fermat's identity or Chu's Theorem , [ 3 ] states that if n ≥ r ≥ 0 {\displaystyle n\geq r\geq 0} are integers, then

  6. De Casteljau's algorithm - Wikipedia

    en.wikipedia.org/wiki/De_Casteljau's_algorithm

    The algorithm is numerically stable [1] when compared to direct evaluation of polynomials. The computational complexity of this algorithm is (), where d is the number of dimensions, and n is the number of control points. There exist faster alternatives. [2] [3]

  7. 1/3–2/3 conjecture - Wikipedia

    en.wikipedia.org/wiki/1/3–2/3_conjecture

    The 1/32/3 conjecture states that, at each step, one may choose a comparison to perform that reduces the remaining number of linear extensions by a factor of 2/3; therefore, if there are E linear extensions of the partial order given by the initial information, the sorting problem can be completed in at most log 3/2 E additional comparisons.

  8. Blum Blum Shub - Wikipedia

    en.wikipedia.org/wiki/Blum_Blum_Shub

    Blum Blum Shub takes the form + =, where M = pq is the product of two large primes p and q.At each step of the algorithm, some output is derived from x n+1; the output is commonly either the bit parity of x n+1 or one or more of the least significant bits of x n+1.

  9. Pascal's triangle - Wikipedia

    en.wikipedia.org/wiki/Pascal's_triangle

    In mathematics, Pascal's triangle is an infinite triangular array of the binomial coefficients which play a crucial role in probability theory, combinatorics, and algebra.In much of the Western world, it is named after the French mathematician Blaise Pascal, although other mathematicians studied it centuries before him in Persia, [1] India, [2] China, Germany, and Italy.