Search results
Results from the WOW.Com Content Network
The inspiration for adopting the word entropy in information theory came from the close resemblance between Shannon's formula and very similar known formulae from statistical mechanics. In statistical thermodynamics the most general formula for the thermodynamic entropy S of a thermodynamic system is the Gibbs entropy
The Zstandard command-line has an "adaptive" (--adapt) mode that varies compression level depending on I/O conditions, mainly how fast it can write the output. Zstd at its maximum compression level gives a compression ratio close to lzma , lzham , and ppmx , and performs better [ vague ] than lza or bzip2 .
In information theory, the cross-entropy between two probability distributions and , over the same underlying set of events, measures the average number of bits needed to identify an event drawn from the set when the coding scheme used for the set is optimized for an estimated probability distribution , rather than the true distribution .
Despite the foregoing, there is a difference between the two quantities. The information entropy Η can be calculated for any probability distribution (if the "message" is taken to be that the event i which had probability p i occurred, out of the space of the events possible), while the thermodynamic entropy S refers to thermodynamic probabilities p i specifically.
A positive void coefficient means that the reactivity increases as the void content inside the reactor increases due to increased boiling or loss of coolant; for example, if the coolant acts predominantly as neutron absorber. This positive void coefficient causes a positive feedback loop, starting with the first occurrence of steam bubbles ...
It's easy to check that the logistic loss and binary cross-entropy loss (Log loss) are in fact the same (up to a multiplicative constant ()). The cross-entropy loss is closely related to the Kullback–Leibler divergence between the empirical distribution and the predicted distribution.
Equivalently, the min-entropy () is the largest real number b such that all events occur with probability at most . The name min-entropy stems from the fact that it is the smallest entropy measure in the family of Rényi entropies. In this sense, it is the strongest way to measure the information content of a discrete random variable.
Multinomial logistic regression is known by a variety of other names, including polytomous LR, [2] [3] multiclass LR, softmax regression, multinomial logit (mlogit), the maximum entropy (MaxEnt) classifier, and the conditional maximum entropy model.