enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    If one considers the text of every book ever published as a sequence, with each symbol being the text of a complete book, and if there are N published books, and each book is only published once, the estimate of the probability of each book is 1/N, and the entropy (in bits) is −log 2 (1/N) = log 2 (N).

  3. Entropy - Wikipedia

    en.wikipedia.org/wiki/Entropy

    Since an entropy is a state function, the entropy change of the system for an irreversible path is the same as for a reversible path between the same two states. [23] However, the heat transferred to or from the surroundings is different as well as its entropy change. We can calculate the change of entropy only by integrating the above formula.

  4. Cross-entropy - Wikipedia

    en.wikipedia.org/wiki/Cross-entropy

    Cross-entropy can be used to define a loss function in machine learning and optimization. Mao, Mohri, and Zhong (2023) give an extensive analysis of the properties of the family of cross-entropy loss functions in machine learning, including theoretical learning guarantees and extensions to adversarial learning. [3]

  5. Extremal principles in non-equilibrium thermodynamics

    en.wikipedia.org/wiki/Extremal_principles_in_non...

    Onsager (1931, I) [1] wrote: "Thus the vector field J of the heat flow is described by the condition that the rate of increase of entropy, less the dissipation function, be a maximum." Careful note needs to be taken of the opposite signs of the rate of entropy production and of the dissipation function, appearing in the left-hand side of ...

  6. Entropy in thermodynamics and information theory - Wikipedia

    en.wikipedia.org/wiki/Entropy_in_thermodynamics...

    Despite the foregoing, there is a difference between the two quantities. The information entropy Η can be calculated for any probability distribution (if the "message" is taken to be that the event i which had probability p i occurred, out of the space of the events possible), while the thermodynamic entropy S refers to thermodynamic probabilities p i specifically.

  7. Loss function - Wikipedia

    en.wikipedia.org/wiki/Loss_function

    In many applications, objective functions, including loss functions as a particular case, are determined by the problem formulation. In other situations, the decision maker’s preference must be elicited and represented by a scalar-valued function (called also utility function) in a form suitable for optimization — the problem that Ragnar Frisch has highlighted in his Nobel Prize lecture. [4]

  8. Information theory - Wikipedia

    en.wikipedia.org/wiki/Information_theory

    The BSC has a capacity of 1 − H b (p) bits per channel use, where H b is the binary entropy function to the base-2 logarithm: A binary erasure channel (BEC) with erasure probability p is a binary input, ternary output channel. The possible channel outputs are 0, 1, and a third symbol 'e' called an erasure.

  9. Category:Loss functions - Wikipedia

    en.wikipedia.org/wiki/Category:Loss_functions

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more