Search results
Results from the WOW.Com Content Network
In heat transfer, thermal engineering, and thermodynamics, thermal conductance and thermal resistance are fundamental concepts that describe the ability of materials or systems to conduct heat and the opposition they offer to the heat current. The ability to manipulate these properties allows engineers to control temperature gradient, prevent ...
Thermal conduction (power) is the heat per unit time transferred some distance ℓ between the two temperatures. κ is the thermal conductivity of the material. A is the cross-sectional area of the object. ΔT is the difference in temperature from one side to the other. ℓ is the length of the path the heat has to be transferred.
Thermal conductivity and resistivity. The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by , , or and is measured in W·m −1 ·K −1. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal conductivity.
Lorenz number is more or less constant. In physics, the Wiedemann–Franz law states that the ratio of the electronic contribution of the thermal conductivity (κ) to the electrical conductivity (σ) of a metal is proportional to the temperature (T). [1] Theoretically, the proportionality constant L, known as the Lorenz number, is equal to ...
Conduction heat flux q k for ideal gas is derived with the gas kinetic theory or the Boltzmann transport equations, and the thermal conductivity is =, -, where u f 2 1/2 is the RMS (root mean square) thermal velocity (3k B T/m from the MB distribution function, m: atomic mass) and τ f-f is the relaxation time (or intercollision time period ...
Thermal conductance. For Thermal conductance see: Thermal contact conductance. Thermal conduction. Thermal conductivity. List of thermal conductivities. Thermal conductance and resistance. Category: Disambiguation pages.
Thermal contact resistance is significant and may dominate for good heat conductors such as metals but can be neglected for poor heat conductors such as insulators. [2] Thermal contact conductance is an important factor in a variety of applications, largely because many physical systems contain a mechanical combination of two materials.
m = mass of each molecule (all molecules are identical in kinetic theory), γ (p) = Lorentz factor as function of momentum (see below) Ratio of thermal to rest mass-energy of each molecule: θ = k B T / m c 2 {\displaystyle \theta =k_ {\text {B}}T/mc^ {2}} K2 is the modified Bessel function of the second kind.