enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    The conjugate gradient method with a trivial modification is extendable to solving, given complex-valued matrix A and vector b, the system of linear equations = for the complex-valued vector x, where A is Hermitian (i.e., A' = A) and positive-definite matrix, and the symbol ' denotes the conjugate transpose.

  3. Hermitian matrix - Wikipedia

    en.wikipedia.org/wiki/Hermitian_matrix

    Hermitian matrices also appear in techniques like singular value decomposition (SVD) and eigenvalue decomposition. In statistics and machine learning, Hermitian matrices are used in covariance matrices, where they represent the relationships between different variables. The positive definiteness of a Hermitian covariance matrix ensures the well ...

  4. Sylvester's criterion - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_criterion

    In mathematics, Sylvester’s criterion is a necessary and sufficient criterion to determine whether a Hermitian matrix is positive-definite. Sylvester's criterion states that a n × n Hermitian matrix M is positive-definite if and only if all the following matrices have a positive determinant: the upper left 1-by-1 corner of M,

  5. Choi's theorem on completely positive maps - Wikipedia

    en.wikipedia.org/wiki/Choi's_theorem_on...

    In mathematics, Choi's theorem on completely positive maps is a result that classifies completely positive maps between finite-dimensional (matrix) C*-algebras. An infinite-dimensional algebraic generalization of Choi's theorem is known as Belavkin 's " Radon–Nikodym " theorem for completely positive maps.

  6. Minor (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Minor_(linear_algebra)

    Let A be an m × n matrix and k an integer with 0 < k ≤ m, and k ≤ n.A k × k minor of A, also called minor determinant of order k of A or, if m = n, the (n − k) th minor determinant of A (the word "determinant" is often omitted, and the word "degree" is sometimes used instead of "order") is the determinant of a k × k matrix obtained from A by deleting m − k rows and n − k columns.

  7. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.

  8. Rayleigh quotient - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_quotient

    In mathematics, the Rayleigh quotient [1] (/ ˈ r eɪ. l i /) for a given complex Hermitian matrix and nonzero vector is defined as: [2] [3] (,) =. For real matrices and vectors, the condition of being Hermitian reduces to that of being symmetric, and the conjugate transpose to the usual transpose ′.

  9. Hermite normal form - Wikipedia

    en.wikipedia.org/wiki/Hermite_normal_form

    In linear algebra, the Hermite normal form is an analogue of reduced echelon form for matrices over the integers Z.Just as reduced echelon form can be used to solve problems about the solution to the linear system Ax=b where x is in R n, the Hermite normal form can solve problems about the solution to the linear system Ax=b where this time x is restricted to have integer coordinates only.