Search results
Results from the WOW.Com Content Network
Wave equation. The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves (e.g. water waves, sound waves and seismic waves) or electromagnetic waves (including light waves). It arises in fields like acoustics, electromagnetism, and fluid dynamics.
Linearity. The Schrödinger equation is a linear differential equation, meaning that if two state vectors and are solutions, then so is any linear combination of the two state vectors where a and b are any complex numbers. [13]: 25 Moreover, the sum can be extended for any number of state vectors.
Electromagnetic wave equation. The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or ...
Quantum mechanics. In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is ...
Panels (G–H) further show two different wave functions that are solutions of the Schrödinger equation but not standing waves. The wave function of an initially very localized free particle. In quantum physics, a wave function (or wavefunction) is a mathematical description of the quantum state of an isolated quantum system.
Wave. Surface waves in water showing water ripples. In physics, mathematics, engineering, and related fields, a wave is a propagating dynamic disturbance (change from equilibrium) of one or more quantities. Periodic waves oscillate repeatedly about an equilibrium (resting) value at some frequency. When the entire waveform moves in one direction ...
The phase velocity is the rate at which the phase of the wave propagates in space. The group velocity is the rate at which the wave envelope, i.e. the changes in amplitude, propagates. The wave envelope is the profile of the wave amplitudes; all transverse displacements are bound by the envelope profile.
In mathematics, and specifically partial differential equations (PDEs), d´Alembert's formula is the general solution to the one-dimensional wave equation: for. It is named after the mathematician Jean le Rond d'Alembert, who derived it in 1747 as a solution to the problem of a vibrating string. [1]