Search results
Results from the WOW.Com Content Network
ARM processors support (via a floating-point control register bit) an "alternative half-precision" format, which does away with the special case for an exponent value of 31 (11111 2). [10] It is almost identical to the IEEE format, but there is no encoding for infinity or NaNs; instead, an exponent of 31 encodes normalized numbers in the range ...
NaN is treated as if it had a larger absolute value than Infinity (or any other floating-point numbers). (−NaN < −Infinity; +Infinity < +NaN.) qNaN and sNaN are treated as if qNaN had a larger absolute value than sNaN. (−qNaN < −sNaN; +sNaN < +qNaN.) NaN is then sorted according to the payload.
Using a limited amount of NaN representations allows the system to use other possible NaN values for non-arithmetic purposes, the most important being "NaN-boxing", i.e. using the payload for arbitrary data. [23] (This concept of "canonical NaN" is not the same as the concept of a "canonical encoding" in IEEE 754.)
It returns the exact value of x–(round(x/y)·y). Round to nearest integer. For undirected rounding when halfway between two integers the even integer is chosen. Comparison operations. Besides the more obvious results, IEEE 754 defines that −∞ = −∞, +∞ = +∞ and x ≠ NaN for any x (including NaN).
"Instead of using a single floating-point number as approximation for the value of a real variable in the mathematical model under investigation, interval arithmetic acknowledges limited precision by associating with the variable a set of reals as possible values. For ease of storage and computation, these sets are restricted to intervals." [7]
In a normal floating-point value, there are no leading zeros in the significand (also commonly called mantissa); rather, leading zeros are removed by adjusting the exponent (for example, the number 0.0123 would be written as 1.23 × 10 −2). Conversely, a denormalized floating-point value has a significand with a leading digit of zero.
This consists in using the last computed approximate values of the root for approximating the function by a polynomial of low degree, which takes the same values at these approximate roots. Then the root of the polynomial is computed and used as a new approximate value of the root of the function, and the process is iterated.
The findgen function in the above example returns a one-dimensional array of floating point numbers, with values equal to a series of integers starting at 0.. Note that the operation in the second line applies in a vectorized manner to the whole 100-element array created in the first line, analogous to the way general-purpose array programming languages (such as APL, J or K) would do it.