Search results
Results from the WOW.Com Content Network
The Pearson's chi-squared test statistic is defined as . The p-value of the test statistic is computed either numerically or by looking it up in a table. If the p-value is small enough (usually p < 0.05 by convention), then the null hypothesis is rejected, and we conclude that the observed data does not follow the multinomial distribution.
Chi-square automatic interaction detection (CHAID) [1][2][3] is a decision tree technique based on adjusted significance testing (Bonferroni correction, Holm-Bonferroni testing). The technique was developed in South Africa in 1975 and was published in 1980 by Gordon V. Kass, who had completed a PhD thesis on this topic.
In some cases, this is better. = ((, | | /)). [citation needed] However, in situations with large sample sizes, using the correction will have little effect on the value of the test statistic, and hence the p-value.
Reduced chi-squared statistic. In statistics, the reduced chi-square statistic is used extensively in goodness of fit testing. It is also known as mean squared weighted deviation (MSWD) in isotopic dating [1] and variance of unit weight in the context of weighted least squares. [2][3] Its square root is called regression standard error, [4 ...
Chi-squared distribution, showing χ2 on the x -axis and p -value (right tail probability) on the y -axis. A chi-squared test (also chi-square or χ2 test) is a statistical hypothesis test used in the analysis of contingency tables when the sample sizes are large. In simpler terms, this test is primarily used to examine whether two categorical ...
The chi-squared distribution is obtained as the sum of the squares of k independent, zero-mean, unit-variance Gaussian random variables. Generalizations of this distribution can be obtained by summing the squares of other types of Gaussian random variables. Several such distributions are described below.
There is nothing magical about a sample size of 1 000, it's just a nice round number that is well within the range where an exact test, chi-square test, and G–test will give almost identical p values. Spreadsheets, web-page calculators, and SAS shouldn't have any problem doing an exact test on a sample size of 1 000 . — John H. McDonald [2]
Bartlett's test is used to test the null hypothesis, H0 that all k population variances are equal against the alternative that at least two are different. If there are k samples with sizes and sample variances then Bartlett's test statistic is. where and is the pooled estimate for the variance. The test statistic has approximately a distribution.