Ad
related to: basic math serge lang pdf book 3
Search results
Results from the WOW.Com Content Network
Serge Lang. Serge Lang (French: [lɑ̃ɡ]; May 19, 1927 – September 12, 2005) was a French-American mathematician and activist who taught at Yale University for most of his career. He is known for his work in number theory and for his mathematics textbooks, including the influential Algebra. He received the Frank Nelson Cole Prize in 1960 and ...
e. In mathematics, Diophantine geometry is the study of Diophantine equations by means of powerful methods in algebraic geometry. By the 20th century it became clear for some mathematicians that methods of algebraic geometry are ideal tools to study these equations. [1] Diophantine geometry is part of the broader field of arithmetic geometry.
Steinberg () gave a useful improvement to the theorem.. Suppose that F is an endomorphism of an algebraic group G.The Lang map is the map from G to G taking g to g −1 F(g).. The Lang–Steinberg theorem states [3] that if F is surjective and has a finite number of fixed points, and G is a connected affine algebraic group over an algebraically closed field, then the Lang map is surjective.
Arakelov (1974, 1975) defined an intersection theory on the arithmetic surfaces attached to smooth projective curves over number fields, with the aim of proving certain results, known in the case of function fields, in the case of number fields. Gerd Faltings (1984) extended Arakelov's work by establishing results such as a Riemann-Roch theorem ...
In mathematics, a field F is called quasi-algebraically closed (or C1) if every non-constant homogeneous polynomial P over F has a non-trivial zero provided the number of its variables is more than its degree. The idea of quasi-algebraically closed fields was investigated by C. C. Tsen, a student of Emmy Noether, in a 1936 paper (Tsen 1936 ...
A height function is a function that quantifies the complexity of mathematical objects. In Diophantine geometry, height functions quantify the size of solutions to Diophantine equations and are typically functions from a set of points on algebraic varieties (or a set of algebraic varieties) to the real numbers. [ 1 ]
The Bombieri–Lang conjecture was independently posed by Enrico Bombieri and Serge Lang. In a 1980 lecture at the University of Chicago, Enrico Bombieri posed a problem about the degeneracy of rational points for surfaces of general type. [1] Independently in a series of papers starting in 1971, Serge Lang conjectured a more general relation ...
Noncommutative algebra. v. t. e. Transcendental number theory is a branch of number theory that investigates transcendental numbers (numbers that are not solutions of any polynomial equation with rational coefficients), in both qualitative and quantitative ways.
Ad
related to: basic math serge lang pdf book 3