Search results
Results from the WOW.Com Content Network
Each chapter contains nine problems, a total of 81 problems. Apart from describing Chinese Remainder Theorem for the first time and providing a constructive proof for it, the text investigated: Indeterminate equations
The word jiu, or "9", means more than just a digit in ancient Chinese. In fact, since it is the largest digit, it often refers to something of a grand scale or a supreme authority. Further, the word zhang, or "chapter", also has more connotations than simply being the "chapter". It may refer to a section, several parts of an article, or an ...
Unlike abstract algebra, elementary algebra is not concerned with algebraic structures outside the realm of real and complex numbers. It is typically taught to secondary school students and at introductory college level in the United States, [5] and builds on their understanding of arithmetic. The use of variables to denote quantities allows ...
Algebraic functions are functions that can be expressed as the solution of a polynomial equation with integer coefficients.. Polynomials: Can be generated solely by addition, multiplication, and raising to the power of a positive integer.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In homological algebra, the relationship between currying and uncurrying is known as tensor-hom adjunction. Here, an interesting twist arises: the Hom functor and the tensor product functor might not lift to an exact sequence; this leads to the definition of the Ext functor and the Tor functor.
[8] [9] In programming languages such as Ada, [10] Fortran, [11] Perl, [12] Python [13] and Ruby, [14] a double asterisk is used, so x 2 is written as x ** 2. The plus–minus sign , ±, is used as a shorthand notation for two expressions written as one, representing one expression with a plus sign, the other with a minus sign.
(1881), "On the Algebras in which Division is Unambiguous", Addendum III in Peirce, Benjamin, "Linear Associative Algebra", American Journal of Mathematics v. 4, pp. 226-229, republished 1882 as Linear Associative Algebra with the addenda and notes by C. S. Peirce, D. Van Nostrand, New York, 133 pages, pp. 129-133.