Search results
Results from the WOW.Com Content Network
If Earth's shape were perfectly known together with the exact mass density ρ = ρ(x, y, z), it could be integrated numerically (when combined with a reciprocal distance kernel) to find an accurate model for Earth's gravitational field. However, the situation is in fact the opposite: by observing the orbits of spacecraft and the Moon, Earth's ...
Propositions 70 and 71 consider the force acting on a particle from a hollow sphere with an infinitesimally thin surface, whose mass density is constant over the surface. The force on the particle from a small area of the surface of the sphere is proportional to the mass of the area and inversely as the square of its distance from the particle.
The simplest model for the shape of the entire Earth is a sphere. The Earth's radius is the distance from Earth's center to its surface, about 6,371 km (3,959 mi). While "radius" normally is a characteristic of perfect spheres, the Earth deviates from spherical by only a third of a percent, sufficiently close to treat it as a sphere in many ...
It states that the flux (surface integral) of the gravitational field over any closed surface is proportional to the mass enclosed. Gauss's law for gravity is often more convenient to work from than Newton's law. [1] The form of Gauss's law for gravity is mathematically similar to Gauss's law for electrostatics, one of Maxwell's equations.
In geodesy and geophysics, theoretical gravity or normal gravity is an approximation of Earth's gravity, on or near its surface, by means of a mathematical model. The most common theoretical model is a rotating Earth ellipsoid of revolution (i.e., a spheroid ).
In a small triangle on the face of the earth, the sum of the angles is only slightly more than 180 degrees. A sphere with a spherical triangle on it. Spherical geometry or spherics (from Ancient Greek σφαιρικά) is the geometry of the two-dimensional surface of a sphere [a] or the n-dimensional surface of higher dimensional spheres.
For example, assuming the Earth is a sphere of radius 6371 km, the surface area of the arctic (north of the Arctic Circle, at latitude 66.56° as of August 2016 [7]) is 2π ⋅ 6371 2 | sin 90° − sin 66.56° | = 21.04 million km 2 (8.12 million sq mi), or 0.5 ⋅ | sin 90° − sin 66.56° | = 4.125% of the total surface area of the Earth.
as the shape of Earth's land surface as it rises above and falls below the sea. As the science of geodesy measured Earth more accurately, the shape of the geoid was first found not to be a perfect sphere but to approximate an oblate spheroid , a specific type of ellipsoid .