Search results
Results from the WOW.Com Content Network
A function [d] A relation that is functional and total. For example, the red and green relations in the diagram are functions, but the blue and black ones are not. An injection [d] A function that is injective. For example, the green relation in the diagram is an injection, but the red, blue and black ones are not. A surjection [d]
This relation, along with the first two polynomials P 0 and P 1, allows all the rest to be generated recursively. The generating function approach is directly connected to the multipole expansion in electrostatics, as explained below, and is how the polynomials were first defined by Legendre in 1782.
A specific element x of X is a value of the variable, and the corresponding element of Y is the value of the function at x, or the image of x under the function. The image of a function, sometimes called its range, is the set of the images of all elements in the domain. [6] [7] [8] [9]
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
In mathematics, Legendre's relation can be expressed in either of two forms: as a relation between complete elliptic integrals, or as a relation between periods and quasiperiods of elliptic functions. The two forms are equivalent as the periods and quasiperiods can be expressed in terms of complete elliptic integrals.
Coxeter uses a separation relation to describe cyclic order, and this relation is strong enough to distinguish the two senses of cyclic order. The automorphisms of a cyclically ordered set may be identified with C 2 , the two-element group, of direct and opposite correspondences.
A function is invertible if and only if its converse relation is a function, in which case the converse relation is the inverse function. The converse relation of a function f : X → Y {\displaystyle f:X\to Y} is the relation f − 1 ⊆ Y × X {\displaystyle f^{-1}\subseteq Y\times X} defined by the graph f − 1 = { ( y , x ) ∈ Y × X : y ...
Holomorphic function: complex-valued function of a complex variable which is differentiable at every point in its domain. Meromorphic function: complex-valued function that is holomorphic everywhere, apart from at isolated points where there are poles. Entire function: A holomorphic function whose domain is the entire complex plane.