Search results
Results from the WOW.Com Content Network
A plant's first line of defense against abiotic stress is in its roots. If the soil holding the plant is healthy and biologically diverse, the plant will have a higher chance of surviving stressful conditions. [10] The plant responses to stress are dependent on the tissue or organ affected by the stress. [8]
A germination rate experiment. Plant physiology is a subdiscipline of botany concerned with the functioning, or physiology, of plants. [1]Plant physiologists study fundamental processes of plants, such as photosynthesis, respiration, plant nutrition, plant hormone functions, tropisms, nastic movements, photoperiodism, photomorphogenesis, circadian rhythms, environmental stress physiology, seed ...
The stringent response, also called stringent control, is a stress response of bacteria and plant chloroplasts in reaction to amino-acid starvation, [1] fatty acid limitation, [2] iron limitation, [3] heat shock [4] and other stress conditions and growth processes. [5]
Plant stress research looks at the response of plants to limitations and excesses of the main abiotic factors (light, temperature, water and nutrients), and of other stress factors that are important in particular situations (e.g. pests, pathogens, or pollutants). Plant stress measurement usually focuses on taking measurements from living plants.
Moisture stress is a form of abiotic stress that occurs when the moisture of plant tissues is reduced to suboptimal levels. Water stress occurs in response to atmospheric and soil water availability when the transpiration rate exceeds the rate of water uptake by the roots and cells lose turgor pressure .
The plant hormone ethylene is a combatant for salinity in most plants. Ethylene is known for regulating plant growth and development and adapted to stress conditions through a complex signal transduction pathway. Central membrane proteins in plants, such as ETO2, ERS1 and EIN2, are used for ethylene signaling in many plant growth processes.
Plants utilize simple chemicals as hormones, which move more easily through their tissues. They are often produced and used on a local basis within the plant body. Plant cells produce hormones that affect even different regions of the cell producing the hormone. Hormones are transported within the plant by utilizing four types of movements.
It also has dramatic changes in the host recipient. Plants are exposed to many stress factors, such as drought, high salinity or pathogens, which reduce the yield of the cultivated plants or affect the quality of the harvested products. Although there are many kinds of biotic stress, the majority of plant diseases are caused by fungi. [4]