Search results
Results from the WOW.Com Content Network
Klein quartic with 28 geodesics (marked by 7 colors and 4 patterns). In geometry, a geodesic (/ ˌ dʒ iː. ə ˈ d ɛ s ɪ k,-oʊ-,-ˈ d iː s ɪ k,-z ɪ k /) [1] [2] is a curve representing in some sense the locally [a] shortest [b] path between two points in a surface, or more generally in a Riemannian manifold.
A geodesic circle is either "the locus on a surface at a constant geodesic distance from a fixed point" or a curve of constant geodesic curvature. [1] A geodesic disk is the region on a surface bounded by a geodesic circle.
There are several ways of defining geodesics (Hilbert & Cohn-Vossen 1952, pp. 220–221).A simple definition is as the shortest path between two points on a surface. However, it is frequently more useful to define them as paths with zero geodesic curvature—i.e., the analogue of straight lines on a curved su
Vincenty relied on formulation of this method given by Rainsford, 1955. Legendre showed that an ellipsoidal geodesic can be exactly mapped to a great circle on the auxiliary sphere by mapping the geographic latitude to reduced latitude and setting the azimuth of the great circle equal to that of the geodesic.
In Geodesic Math and How to Use It, Hugh Kenner wrote, "Tables of chord factors, containing as they do the essential design information for spherical systems, were for many years guarded like military secrets. As late as 1966, some 3ν icosa figures from Popular Science Monthly were all anyone outside the circle of Fuller licensees had to go on ...
Any arc of a great circle is a geodesic of the sphere, so that great circles in spherical geometry are the natural analog of straight lines in Euclidean space.For any pair of distinct non-antipodal points on the sphere, there is a unique great circle passing through both.
Finding the geodesic between two points on the Earth, the so-called inverse geodetic problem, was the focus of many mathematicians and geodesists over the course of the 18th and 19th centuries with major contributions by Clairaut, [5] Legendre, [6] Bessel, [7] and Helmert English translation of Astron. Nachr. 4, 241–254 (1825).
Solving the geodesic equations is a procedure used in mathematics, particularly Riemannian geometry, and in physics, particularly in general relativity, that results in obtaining geodesics. Physically, these represent the paths of (usually ideal) particles with no proper acceleration , their motion satisfying the geodesic equations.