enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of types of numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_numbers

    Prime number: A positive integer with exactly two positive divisors: itself and 1. The primes form an infinite sequence 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ... Composite number: A positive integer that can be factored into a product of smaller positive integers. Every integer greater than one is either prime or composite.

  3. Integer - Wikipedia

    en.wikipedia.org/wiki/Integer

    Other integer data types are implemented with a fixed size, usually a number of bits which is a power of 2 (4, 8, 16, etc.) or a memorable number of decimal digits (e.g., 9 or 10). Cardinality The set of integers is countably infinite , meaning it is possible to pair each integer with a unique natural number.

  4. Abundant number - Wikipedia

    en.wikipedia.org/wiki/Abundant_number

    In number theory, an abundant number or excessive number is a positive integer for which the sum of its proper divisors is greater than the number. The integer 12 is the first abundant number. The integer 12 is the first abundant number.

  5. Positive real numbers - Wikipedia

    en.wikipedia.org/wiki/Positive_real_numbers

    In a complex plane, > is identified with the positive real axis, and is usually drawn as a horizontal ray. This ray is used as reference in the polar form of a complex number . The real positive axis corresponds to complex numbers z = | z | e i φ , {\displaystyle z=|z|\mathrm {e} ^{\mathrm {i} \varphi },} with argument φ = 0. {\displaystyle ...

  6. Portal:Arithmetic - Wikipedia

    en.wikipedia.org/wiki/Portal:Arithmetic

    Every positive integer is composite, prime, or the unit 1, so the composite numbers are exactly the numbers that are not prime and not a unit. E.g., the integer 14 is a composite number because it is the product of the two smaller integers 2 × 7 but the integers 2 and 3 are not because each can only be divided by one and itself.

  7. Polite number - Wikipedia

    en.wikipedia.org/wiki/Polite_number

    In number theory, a polite number is a positive integer that can be written as the sum of two or more consecutive positive integers. A positive integer which is not polite is called impolite . [ 1 ] [ 2 ] The impolite numbers are exactly the powers of two , and the polite numbers are the natural numbers that are not powers of two.

  8. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In mathematics, the result of the modulo operation is an equivalence class, and any member of the class may be chosen as representative; however, the usual representative is the least positive residue, the smallest non-negative integer that belongs to that class (i.e., the remainder of the Euclidean division). [2]

  9. Radical of an integer - Wikipedia

    en.wikipedia.org/wiki/Radical_of_an_integer

    In number theory, the radical of a positive integer n is defined as the product of the distinct prime numbers dividing n. Each prime factor of n occurs exactly once as a factor of this product: r a d ( n ) = ∏ p ∣ n p prime p {\displaystyle \displaystyle \mathrm {rad} (n)=\prod _{\scriptstyle p\mid n \atop p{\text{ prime}}}p}