Search results
Results from the WOW.Com Content Network
The partial sums of a power series are polynomials, the partial sums of the Taylor series of an analytic function are a sequence of converging polynomial approximations to the function at the center, and a converging power series can be seen as a kind of generalized polynomial with infinitely many terms. Conversely, every polynomial is a power ...
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
Alternatively, the equality can be justified by multiplying the power series on the left by 1 − x, and checking that the result is the constant power series 1 (in other words, that all coefficients except the one of x 0 are equal to 0). Moreover, there can be no other power series with this property.
Lucas numbers have L 1 = 1, L 2 = 3, and L n = L n−1 + L n−2. Primefree sequences use the Fibonacci recursion with other starting points to generate sequences in which all numbers are composite. Letting a number be a linear function (other than the sum) of the 2 preceding numbers. The Pell numbers have P n = 2P n−1 + P n−2.
Let X and Y be n × n complex matrices and let a and b be arbitrary complex numbers. We denote the n × n identity matrix by I and the zero matrix by 0. The matrix exponential satisfies the following properties. [2] We begin with the properties that are immediate consequences of the definition as a power series: e 0 = I
For given x, Padé approximants can be computed by Wynn's epsilon algorithm [2] and also other sequence transformations [3] from the partial sums = + + + + of the Taylor series of f, i.e., we have = ()!. f can also be a formal power series, and, hence, Padé approximants can also be applied to the summation of divergent series.
If we studied this as a power series, its properties would include, for example, that its radius of convergence is 1 by the Cauchy–Hadamard theorem. However, as a formal power series, we may ignore this completely; all that is relevant is the sequence of coefficients [1, −3, 5, −7, 9, −11, ...]. In other words, a formal power series is ...
This test can be used with a power series = = ()where the coefficients c n, and the center p are complex numbers and the argument z is a complex variable.. The terms of this series would then be given by a n = c n (z − p) n.