Search results
Results from the WOW.Com Content Network
Electrospray ionization (ESI) is a technique used in mass spectrometry to produce ions using an electrospray in which a high voltage is applied to a liquid to create an aerosol. It is especially useful in producing ions from macromolecules because it overcomes the propensity of these molecules to fragment when ionized.
Laser ionization time-of-flight mass spectrometer where ions are accelerated and separated by mass in a field-free drift region before detection Bendix MA-2 Time-of-Flight Mass Spectrometer, 1960s. Time-of-flight mass spectrometry (TOFMS) is a method of mass spectrometry in which an ion's mass-to-charge ratio is determined by a time of flight ...
Electron ionization. Electron ionization (EI, formerly known as electron impact ionization [1] and electron bombardment ionization [2]) is an ionization method in which energetic electrons interact with solid or gas phase atoms or molecules to produce ions. [3] EI was one of the first ionization techniques developed for mass spectrometry. [4]
The ionization chamber has found wide and beneficial use in smoke detectors. In an ionisation type smoke detector, ambient air is allowed to freely enter the ionization chamber. The chamber contains a small amount of americium-241, which is an emitter of alpha particles which produce a constant ion current.
Electron capture happens most often in the heavier neutron-deficient elements where the mass change is smallest and positron emission is not always possible. When the loss of mass in a nuclear reaction is greater than zero but less than 2m e c 2 the process cannot occur by positron emission, but occurs spontaneously for electron capture.
For various types of atoms, there are 1st, 2nd, 3rd, etc. ionization energies for removing the 1st, then the 2nd, then the 3rd, etc. of the highest energy electrons, respectively, from the atom originally in the ground state.
The work function W for a given surface is defined by the difference [1] =, where −e is the charge of an electron, ϕ is the electrostatic potential in the vacuum nearby the surface, and E F is the Fermi level (electrochemical potential of electrons) inside the material.