Search results
Results from the WOW.Com Content Network
Schematic view of the different current systems which shape the Earth's magnetosphere. In many MHD systems most of the electric current is compressed into thin nearly-two-dimensional ribbons termed current sheets. [10] These can divide the fluid into magnetic domains, inside of which the currents are relatively weak.
The other front coefficient of this diffusion is a function of the ratio between the charge exchange reaction rate and the gyro frequency. A careful analysis tells this front coefficient for Bohm's experiment was in the range of 1/13 ~ 1/40. [7]
A generalization of the Landauer formula for multiple terminals is the Landauer–Büttiker formula, [5] [4] proposed by Markus Büttiker [].If terminal has voltage (that is, its chemical potential is and differs from terminal chemical potential), and , is the sum of transmission probabilities from terminal to terminal (note that , may or may not equal , depending on the presence of a magnetic ...
Magnetic reconnection is a breakdown of "ideal-magnetohydrodynamics" and so of "Alfvén's theorem" (also called the "frozen-in flux theorem") which applies to large-scale regions of a highly-conducting magnetoplasma, for which the Magnetic Reynolds Number is very large: this makes the convective term in the induction equation dominate in such regions.
In magnetohydrodynamics (MHD), shocks and discontinuities are transition layers where properties of a plasma change from one equilibrium state to another. The relation between the plasma properties on both sides of a shock or a discontinuity can be obtained from the conservative form of the MHD equations, assuming conservation of mass, momentum, energy and of .
For the limit , the magnetic diffusion equation = is just a vector-valued form of the heat equation. For a localized initial magnetic field (e.g. Gaussian distribution) within a conducting material, the maxima and minima will asymptotically decay to a value consistent with Laplace's equation for the given boundary conditions.
Schematic of the Birkeland or Field-Aligned Currents and the ionospheric current systems they connect to, Pedersen and Hall currents. [1]A Birkeland current (also known as field-aligned current, FAC) is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere.
The LLG equation describes the rotation of the magnetization in response to the effective field H eff and accounts for not only a real magnetic field but also internal magnetic interactions such as exchange and anisotropy. An earlier, but equivalent, equation (the Landau–Lifshitz equation) was introduced by Landau & Lifshitz (1935): [1]