Search results
Results from the WOW.Com Content Network
Klein quartic with 28 geodesics (marked by 7 colors and 4 patterns). In geometry, a geodesic (/ ˌ dʒ iː. ə ˈ d ɛ s ɪ k,-oʊ-,-ˈ d iː s ɪ k,-z ɪ k /) [1] [2] is a curve representing in some sense the locally [a] shortest [b] path between two points in a surface, or more generally in a Riemannian manifold.
Geodesic polyhedra are a good approximation to a sphere for many purposes, and appear in many different contexts. The most well-known may be the geodesic domes, hemispherical architectural structures designed by Buckminster Fuller, which geodesic polyhedra are named after. Geodesic grids used in geodesy also
Geodesy or geodetics [1] is the science of measuring and representing the geometry, gravity, and spatial orientation of the Earth in temporally varying 3D.It is called planetary geodesy when studying other astronomical bodies, such as planets or circumplanetary systems. [2]
In general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational forces is a particular type of geodesic.
The geodesic oscillates north and south of the equator; on each oscillation it completes slightly less than a full circuit around the ellipsoid resulting, in the typical case, in the geodesic filling the area bounded by the two latitude lines β = ±β 1. Two examples are given in Figs. 18 and 19.
Geodetic latitude and geocentric latitude have different definitions. Geodetic latitude is defined as the angle between the equatorial plane and the surface normal at a point on the ellipsoid, whereas geocentric latitude is defined as the angle between the equatorial plane and a radial line connecting the centre of the ellipsoid to a point on the surface (see figure).
The geodesic and Goldberg polyhedra are parameterized by integers m and n, with > and . T is the triangulation number, which is equal to T = m 2 + m n + n 2 {\displaystyle T=m^{2}+mn+n^{2}} . Icosahedral
In differential geometry and dynamical systems, a closed geodesic on a Riemannian manifold is a geodesic that returns to its starting point with the same tangent direction. It may be formalized as the projection of a closed orbit of the geodesic flow on the tangent space of the manifold.