Search results
Results from the WOW.Com Content Network
methods for second order ODEs. We said that all higher-order ODEs can be transformed to first-order ODEs of the form (1). While this is certainly true, it may not be the best way to proceed. In particular, Nyström methods work directly with second-order equations.
COPASI, a free (Artistic License 2.0) software package for the integration and analysis of ODEs. MATLAB, a technical computing application (MATrix LABoratory) GNU Octave, a high-level language, primarily intended for numerical computations. Scilab, an open source application for numerical computation.
Octave programs consist of a list of function calls or a script. The syntax is matrix-based and provides various functions for matrix operations. It supports various data structures and allows object-oriented programming. [26] Its syntax is very similar to MATLAB, and careful programming of a script will allow it to run on both Octave and ...
For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).
For an arbitrary system of ODEs, a set of solutions (), …, are said to be linearly-independent if: + … + = is satisfied only for = … = =.A second-order differential equation ¨ = (,, ˙) may be converted into a system of first order linear differential equations by defining = ˙, which gives us the first-order system:
In practical terms, the distinction between DAEs and ODEs is often that the solution of a DAE system depends on the derivatives of the input signal and not just the signal itself as in the case of ODEs; [3] this issue is commonly encountered in nonlinear systems with hysteresis, [4] such as the Schmitt trigger. [5]
The second-order autonomous equation = (, ′) is more difficult, but it can be solved [2] by introducing the new variable = and expressing the second derivative of via the chain rule as = = = so that the original equation becomes = (,) which is a first order equation containing no reference to the independent variable .
A MEX file is a type of computer file that provides an interface between MATLAB or Octave and functions written in C, C++ or Fortran.It stands for "MATLAB executable". When compiled, MEX files are dynamically loaded and allow external functions to be invoked from within MATLAB or Octave as if they were built-in functions.