Search results
Results from the WOW.Com Content Network
High-throughput screening (HTS) is a method for scientific discovery especially used in drug discovery and relevant to the fields of biology, materials science [1] and chemistry. [ 2 ] [ 3 ] Using robotics , data processing/control software, liquid handling devices, and sensitive detectors, high-throughput screening allows a researcher to ...
Example organisms used for high-content screening include the fruit fly (Drosophila melanogaster), zebrafish (Danio rerio) and mice (Mus musculus). [13] In some instances the term phenotypic screening is used to include the serendipitous findings that occur in clinical trial settings particularly when new and unanticipated therapeutic effects ...
A high throughput assay can be either an endpoint or a kinetic assay usually done on an automated platform in 96-, 384- or 1536-well microplate formats (High Throughput Screening). Such assays are able to test large number of compounds or analytes or make functional biological readouts in response to a stimuli and/or compounds being tested. [6]
A clinical chemistry analyzer; hand shows size. Clinical chemistry (also known as chemical pathology, clinical biochemistry or medical biochemistry) is a division in medical laboratory sciences focusing on qualitative tests of important compounds, referred to as analytes or markers, in bodily fluids and tissues using analytical techniques and specialized instruments. [1]
For example, the ColoGuard test may be used to screen people over 55 years old for colorectal cancer. [57] Cancer is a longtime-scale disease with various progression steps, molecular diagnostics tools can be used for prognosis of cancer progression. For example, the OncoType Dx test by Genomic Health can estimate risk of breast cancer.
Several types of screening exist: universal screening involves screening of all individuals in a certain category (for example, all children of a certain age). Case finding involves screening a smaller group of people based on the presence of risk factors (for example, because a family member has been diagnosed with a hereditary disease).
Blood compatibility testing is routinely performed before a blood transfusion.The full compatibility testing process involves ABO and RhD (Rh factor) typing; screening for antibodies against other blood group systems; and crossmatching, which involves testing the recipient's blood plasma against the donor's red blood cells as a final check for incompatibility.
For example, in a knock-out screen, one or more genes are completely deleted and the deletion mutants are tested for phenotypes. Such screens have been done for all genes in many bacteria and even complex organisms, such as C. elegans. [1] A reverse genetic screen typically begins with a gene sequence followed by targeted inactivation. [9]