Search results
Results from the WOW.Com Content Network
dichlorine trioxide, Cl 2 O 3 as O−Cl−ClO 2, chlorine (III,V) oxide dichlorine trioxide, Cl 2 O 3 as possible isomer Cl−O−ClO 2, chlorine (I,V) oxide; dichlorine trioxide, Cl 2 O 3 as hypothetical isomer O−Cl−O−Cl−O, chlorine (III) oxide; dichlorine tetroxide, also known as chlorine perchlorate, Cl 2 O 4 or ClOClO 3, chlorine (I ...
Molecular orbital diagram of dinitrogen. With nitrogen, we see the two molecular orbitals mixing and the energy repulsion. This is the reasoning for the rearrangement from a more familiar diagram. The σ from the 2p is more non-bonding due to mixing, and same with the 2s σ. This also causes a large jump in energy in the 2p σ* orbital.
This is the energy per mole necessary to remove electrons from gaseous atoms or atomic ions. The first molar ionization energy applies to the neutral atoms. The second, third, etc., molar ionization energy applies to the further removal of an electron from a singly, doubly, etc., charged ion.
In a compound or ion, the sum of the oxidation states equals the total charge of the compound or ion. Fluorine in compounds has OS = −1; this extends to chlorine and bromine only when not bonded to a lighter halogen, oxygen or nitrogen. Group 1 and group 2 metals in compounds have OS = +1 and +2, respectively.
The adiabatic ionization energy of a molecule is the minimum amount of energy required to remove an electron from a neutral molecule, i.e. the difference between the energy of the vibrational ground state of the neutral species (v" = 0 level) and that of the positive ion (v' = 0). The specific equilibrium geometry of each species does not ...
Element Negative states Positive states Group Notes −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 Z; 1 hydrogen: H −1 +1: 1 2 helium: He 0 18
The standard Gibbs free energy of formation (G f °) of a compound is the change of Gibbs free energy that accompanies the formation of 1 mole of a substance in its standard state from its constituent elements in their standard states (the most stable form of the element at 1 bar of pressure and the specified temperature, usually 298.15 K or 25 ...
The first of these quantities is used in atomic physics, the second in chemistry, but both refer to the same basic property of the element. To convert from "value of ionization energy" to the corresponding "value of molar ionization energy", the conversion is: 1 eV = 96.48534 kJ/mol 1 kJ/mol = 0.0103642688 eV [12]