Search results
Results from the WOW.Com Content Network
When comparing a polar and nonpolar molecule with similar molar masses, the polar molecule in general has a higher boiling point, because the dipole–dipole interaction between polar molecules results in stronger intermolecular attractions. One common form of polar interaction is the hydrogen bond, which is also
In 1802 the term "metalloids" was introduced for elements with the physical properties of metals but the chemical properties of non-metals. [194] However, in 1811, the Swedish chemist Berzelius used the term "metalloids" [195] to describe all nonmetallic elements, noting their ability to form negatively charged ions with oxygen in aqueous ...
An alternative in metallurgy is to consider various malleable alloys such as steel, aluminium alloys and similar as metals, and other materials as nonmetals; [20] fabricating metals is termed metalworking, [21] but there is no corresponding term for nonmetals. A loose definition such as this is often the common usage, but can also be inaccurate.
Nonmetals show more variability in their properties than do metals. [1] Metalloids are included here since they behave predominately as chemically weak nonmetals.. Physically, they nearly all exist as diatomic or monatomic gases, or polyatomic solids having more substantial (open-packed) forms and relatively small atomic radii, unlike metals, which are nearly all solid and close-packed, and ...
Its thermal conductivity (2,200 W/m•K) is five times greater than the most conductive metal (Ag at 429); 300 times higher than the least conductive metal (Pu at 6.74); and nearly 4,000 times that of water (0.58) and 100,000 times that of air (0.0224). This high thermal conductivity is used by jewelers and gemologists to separate diamonds from ...
In the simplest case, the cation is a metal atom and the anion is a nonmetal atom, but these ions can be more complex, e.g. polyatomic ions like NH + 4 or SO 2− 4. In simpler words, an ionic bond results from the transfer of electrons from a metal to a non-metal to obtain a full valence shell for both atoms.
In chemistry, π-effects or π-interactions are a type of non-covalent interaction that involves π systems.Just like in an electrostatic interaction where a region of negative charge interacts with a positive charge, the electron-rich π system can interact with a metal (cationic or neutral), an anion, another molecule and even another π system. [1]
Another advantage of these anions is that their salts are more soluble in non-polar organic solvents such as dichloromethane, toluene, and, in some cases, even alkanes. [citation needed] Polar solvents, such as acetonitrile, THF, and water, tend to bind to electrophilic centers, in which cases, the use of a non-coordinating anion is pointless.