enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fact table - Wikipedia

    en.wikipedia.org/wiki/Fact_table

    Example of a star schema; the central table is the fact table. In data warehousing, a fact table consists of the measurements, metrics or facts of a business process. It is located at the center of a star schema or a snowflake schema surrounded by dimension tables. Where multiple fact tables are used, these are arranged as a fact constellation ...

  3. Dimension (data warehouse) - Wikipedia

    en.wikipedia.org/wiki/Dimension_(data_warehouse)

    Dimension table rows are uniquely identified by a single key field. It is recommended that the key field be a simple integer because a key value is meaningless, used only for joining fields between the fact and dimension tables. Dimension tables often use primary keys that are also surrogate keys.

  4. Data model - Wikipedia

    en.wikipedia.org/wiki/Data_model

    Associations between data objects are described during the database design procedure, such that normalization is an inevitable result of the process. Star schema The simplest style of data warehouse schema. The star schema consists of a few "fact tables" (possibly only one, justifying the name) referencing any number of "dimension tables".

  5. Dimensional fact model - Wikipedia

    en.wikipedia.org/wiki/Dimensional_fact_model

    A fact is represented by a box that displays the fact name along with the measure names. Small circles represent the dimensions, which are linked to the fact by straight lines (see Figure 1). A dimensional attribute is a property, with a finite domain, of a dimension. Like dimensions, a dimensional attribute is represented by a circle.

  6. Star schema - Wikipedia

    en.wikipedia.org/wiki/Star_schema

    Fact_Sales is the fact table and there are three dimension tables Dim_Date, Dim_Store and Dim_Product. Each dimension table has a primary key on its Id column, relating to one of the columns (viewed as rows in the example schema) of the Fact_Sales table's three-column (compound) primary key (Date_Id, Store_Id, Product_Id).

  7. Dimensional modeling - Wikipedia

    en.wikipedia.org/wiki/Dimensional_modeling

    The third step in the design process is to define the dimensions of the model. The dimensions must be defined within the grain from the second step of the 4-step process. Dimensions are the foundation of the fact table, and is where the data for the fact table is collected. Typically dimensions are nouns like date, store, inventory etc.

  8. Data vault modeling - Wikipedia

    en.wikipedia.org/wiki/Data_Vault_Modeling

    For this purpose, the hubs and related satellites on those hubs can be considered as dimensions and the links and related satellites on those links can be viewed as fact tables in a dimensional model. This enables you to quickly prototype a dimensional model out of a data vault model using views.

  9. Aggregate (data warehouse) - Wikipedia

    en.wikipedia.org/wiki/Aggregate_(data_warehouse)

    When facts are aggregated, it is either done by eliminating dimensionality or by associating the facts with a rolled up dimension. Rolled up dimensions should be shrunken versions of the dimensions associated with the granular base facts. This way, the aggregated dimension tables should conform to the base dimension tables. [2]