Search results
Results from the WOW.Com Content Network
The Gouy-Stodola theorem is often applied to refrigeration cycles. These are thermodynamic cycles or mechanical systems where external work can be used to move heat from low temperature sources to high temperature sinks, or vice versa. Specifically, the theorem is useful in analyzing vapor compression and vapor absorption refrigeration cycles.
The Poisson–Boltzmann equation describes a model proposed independently by Louis Georges Gouy and David Leonard Chapman in 1910 and 1913, respectively. [3] In the Gouy-Chapman model, a charged solid comes into contact with an ionic solution, creating a layer of surface charges and counter-ions or double layer. [4]
Schematic diagram of Gouy balance. The Gouy balance, invented by the French physicist Louis Georges Gouy, is a device for measuring the magnetic susceptibility of a sample. . The Gouy balance operates on magnetic torque, by placing the sample on a horizontal arm or beam suspended by a thin fiber, and placing either a permanent magnet or electromagnet on the other end of the arm, there is a ...
Ax–Grothendieck theorem (model theory) Barwise compactness theorem (mathematical logic) Borel determinacy theorem ; Büchi-Elgot-Trakhtenbrot theorem (mathematical logic) Cantor–Bernstein–Schröder theorem (set theory, cardinal numbers) Cantor's theorem (set theory, Cantor's diagonal argument) Church–Rosser theorem (lambda calculus)
The Gouy-Chapman model fails for highly charged DLs. In 1924, Otto Stern suggested combining the Helmholtz model with the Gouy-Chapman model: in Stern's model, some ions adhere to the electrode as suggested by Helmholtz, giving an internal Stern layer, while some form a Gouy-Chapman diffuse layer. [10]
Louis Georges Gouy. Louis Georges Gouy (February 19, 1854 – January 27, 1926) [1] was a French physicist.He is the namesake of the Gouy balance, the Gouy–Chapman electric double layer model (which is a relatively successful albeit limited model that describes the electrical double-layer which finds applications in vast areas of studies from physical chemistry to biophysics) and the Gouy phase.
The Gouy phase results in an increase in the apparent wavelength near the waist (z ≈ 0).Thus the phase velocity in that region formally exceeds the speed of light.That paradoxical behavior must be understood as a near-field phenomenon where the departure from the phase velocity of light (as would apply exactly to a plane wave) is small except in the case of a beam with large numerical ...
See for example Riemann–Lebesgue lemma. The second statement is that when f is a Morse function, so that the singular points of f are non-degenerate and isolated, then the question can be reduced to the case n = 1. In fact, then, a choice of g can be made to split the integral into cases with just one critical point P in each.