Search results
Results from the WOW.Com Content Network
A variant of the Gram–Schmidt process using transfinite recursion applied to a (possibly uncountably) infinite sequence of vectors () < yields a set of orthonormal vectors () < with such that for any , the completion of the span of {: < (,)} is the same as that of {: <}.
The norm induced by this inner product is the Hilbert–Schmidt norm under which the space of Hilbert–Schmidt operators is complete (thus making it into a Hilbert space). [4] The space of all bounded linear operators of finite rank (i.e. that have a finite-dimensional range) is a dense subset of the space of Hilbert–Schmidt operators (with ...
In linear algebra, the Schmidt decomposition (named after its originator Erhard Schmidt) refers to a particular way of expressing a vector in the tensor product of two inner product spaces. It has numerous applications in quantum information theory , for example in entanglement characterization and in state purification , and plasticity .
There are multiple ways to construct orthonormal bases, including using the Gram–Schmidt orthogonalization or singular-value decomposition of clr transformed data. Another alternative is to construct log contrasts from a bifurcating tree.
Using Zorn's lemma and the Gram–Schmidt process (or more simply well-ordering and transfinite recursion), one can show that every Hilbert space admits an orthonormal basis; [7] furthermore, any two orthonormal bases of the same space have the same cardinality (this can be proven in a manner akin to that of the proof of the usual dimension ...
Despite the name, an orthonormal basis is not, in general, a basis in the sense of linear algebra (Hamel basis). More precisely, an orthonormal basis is a Hamel basis if and only if the Hilbert space is a finite-dimensional vector space. [90] Completeness of an orthonormal system of vectors of a Hilbert space can be equivalently restated as:
The Gram-Schmidt theorem, together with the axiom of choice, guarantees that every vector space admits an orthonormal basis. This is possibly the most significant use of orthonormality, as this fact permits operators on inner-product spaces to be discussed in terms of their action on the space's orthonormal basis vectors. What results is a deep ...
In other words, the sequence is obtained from the sequence of monomials 1, x, x 2, … by the Gram–Schmidt process with respect to this inner product. Usually the sequence is required to be orthonormal , namely, P n , P n = 1 , {\displaystyle \langle P_{n},P_{n}\rangle =1,} however, other normalisations are sometimes used.