Search results
Results from the WOW.Com Content Network
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
Covertype Dataset Data for predicting forest cover type strictly from cartographic variables. Many geographical features given. 581,012 Text Classification 1998 [311] [312] J. Blackard et al. Abscisic Acid Signaling Network Dataset Data for a plant signaling network. Goal is to determine set of rules that governs the network. None. 300 Text
Previously, NIST released two datasets: Special Database 1 (NIST Test Data I, or SD-1); and Special Database 3 (or SD-2). They were released on two CD-ROMs. They were released on two CD-ROMs. SD-1 was the test set, and it contained digits written by high school students, 58,646 images written by 500 different writers.
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
Data type validation is customarily carried out on one or more simple data fields. The simplest kind of data type validation verifies that the individual characters provided through user input are consistent with the expected characters of one or more known primitive data types as defined in a programming language or data storage and retrieval ...
Word2vec is a technique in natural language processing (NLP) for obtaining vector representations of words. These vectors capture information about the meaning of the word based on the surrounding words.
Inspection is a verification method that is used to compare how correctly the conceptual model matches the executable model. Teams of experts, developers, and testers will thoroughly scan the content (algorithms, programming code, documents, equations) in the original conceptual model and compare with the appropriate counterpart to verify how closely the executable model matches. [1]
Data reconciliation is a technique that targets at correcting measurement errors that are due to measurement noise, i.e. random errors.From a statistical point of view the main assumption is that no systematic errors exist in the set of measurements, since they may bias the reconciliation results and reduce the robustness of the reconciliation.