Search results
Results from the WOW.Com Content Network
The first two steps of the Gram–Schmidt process. In mathematics, particularly linear algebra and numerical analysis, the Gram–Schmidt process or Gram-Schmidt algorithm is a way of finding a set of two or more vectors that are perpendicular to each other.
In linear algebra, the Schmidt decomposition (named after its originator Erhard Schmidt) refers to a particular way of expressing a vector in the tensor product of two inner product spaces. It has numerous applications in quantum information theory , for example in entanglement characterization and in state purification , and plasticity .
In mathematics, the Iwasawa decomposition (aka KAN from its expression) of a semisimple Lie group generalises the way a square real matrix can be written as a product of an orthogonal matrix and an upper triangular matrix (QR decomposition, a consequence of Gram–Schmidt orthogonalization).
A practical way to enforce this is by requiring that the next search direction be built out of the current residual and all previous search directions. The conjugation constraint is an orthonormal-type constraint and hence the algorithm can be viewed as an example of Gram-Schmidt orthonormalization. This gives the following expression:
Thus the problem of finding conjugate axes is less constrained than the problem of orthogonalization, so the Gram–Schmidt process works, with additional degrees of freedom that we can later use to pick the ones that would simplify the computation: Arbitrarily set .
In numerical linear algebra, the Arnoldi iteration is an eigenvalue algorithm and an important example of an iterative method.Arnoldi finds an approximation to the eigenvalues and eigenvectors of general (possibly non-Hermitian) matrices by constructing an orthonormal basis of the Krylov subspace, which makes it particularly useful when dealing with large sparse matrices.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Magma has a provable implementation of fpLLL, [6] which is an LLL algorithm for integer matrices which uses floating point numbers for the Gram–Schmidt coefficients, but such that the result is rigorously proven to be LLL-reduced. Commutative algebra and Gröbner bases