Search results
Results from the WOW.Com Content Network
For example, if the p-value of a test statistic result is estimated at 0.0596, then there is a probability of 5.96% that we falsely reject H 0. Or, if we say, the statistic is performed at level α, like 0.05, then we allow to falsely reject H 0 at 5%. A significance level α of 0.05 is relatively common, but there is no general rule that fits ...
The specificity of the test is equal to 1 minus the false positive rate. In statistical hypothesis testing, this fraction is given the Greek letter α, and 1 − α is defined as the specificity of the test. Increasing the specificity of the test lowers the probability of type I errors, but may raise the probability of type II errors (false ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Null hypothesis (H 0) Positive data: Data that enable the investigator to reject a null hypothesis. Alternative hypothesis (H 1) Suppose the data can be realized from an N(0,1) distribution. For example, with a chosen significance level α = 0.05, from the Z-table, a one-tailed critical value of approximately 1.645 can be obtained.
Naaman [3] proposed an adaption of the significance level to the sample size in order to control false positives: α n, such that α n = n − r with r > 1/2. At least in the numerical example, taking r = 1/2, results in a significance level of 0.00318, so the frequentist would not reject the null hypothesis, which is in agreement with the ...
A hypothesis is rejected at level α if and only if its adjusted p-value is less than α. In the earlier example using equal weights, the adjusted p-values are 0.03, 0.06, 0.06, and 0.02. This is another way to see that using α = 0.05, only hypotheses one and four are rejected by this procedure.
Dummy variables are useful in various cases. For example, in econometric time series analysis, dummy variables may be used to indicate the occurrence of wars, or major strikes. It could thus be thought of as a Boolean, i.e., a truth value represented as the numerical value 0 or 1 (as is sometimes done in computer programming).
A drawback of polynomial bases is that the basis functions are "non-local", meaning that the fitted value of y at a given value x = x 0 depends strongly on data values with x far from x 0. [9] In modern statistics, polynomial basis-functions are used along with new basis functions, such as splines, radial basis functions, and wavelets. These ...