enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravity of Mars - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Mars

    where G is the universal constant of gravitation (commonly taken as G = 6.674 × 10 −11 m 3 kg −1 s −2), [10] M is the mass of Mars (most updated value: 6.41693 × 10 23 kg), [11] m is the mass of the satellite, r is the distance between Mars and the satellite, and is the angular velocity of the satellite, which is also equivalent to (T ...

  3. List of gravitationally rounded objects of the Solar System

    en.wikipedia.org/wiki/List_of_gravitationally...

    Vesta (radius 262.7 ± 0.1 km), the second-largest asteroid, appears to have a differentiated interior and therefore likely was once a dwarf planet, but it is no longer very round today. [74] Pallas (radius 255.5 ± 2 km ), the third-largest asteroid, appears never to have completed differentiation and likewise has an irregular shape.

  4. Escape velocity - Wikipedia

    en.wikipedia.org/wiki/Escape_velocity

    G is the universal gravitational constant (G ≈ 6.67 × 10 −11 m 3 ⋅kg −1 ⋅s −2 ‍ [4]) g = GM / d 2 is the local gravitational acceleration (or the surface gravity , when d = r ). The value GM is called the standard gravitational parameter , or μ , and is often known more accurately than either G or M separately.

  5. Free-return trajectory - Wikipedia

    en.wikipedia.org/wiki/Free-return_trajectory

    On this assumption, a two-year return is not possible for some years, and for some years a delta-v kick of 0.6 to 2.7 km/s at Mars may be needed to get back to Earth. [ 10 ] NASA published the Design Reference Architecture 5.0 for Mars in 2009, advocating a 174-day transfer to Mars, which is close to Zubrin's proposed trajectory. [ 11 ]

  6. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    [2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude. A conventional standard value is defined exactly as 9.80665 m/s² (about 32.1740 ft/s²).

  7. Orbital speed - Wikipedia

    en.wikipedia.org/wiki/Orbital_speed

    Halley's Comet on an eccentric orbit that reaches beyond Neptune will be moving 54.6 km/s when 0.586 AU (87,700 thousand km) from the Sun, 41.5 km/s when 1 AU from the Sun (passing Earth's orbit), and roughly 1 km/s at aphelion 35 AU (5.2 billion km) from the Sun. [7] Objects passing Earth's orbit going faster than 42.1 km/s have achieved ...

  8. List of Solar System objects by size - Wikipedia

    en.wikipedia.org/wiki/List_of_Solar_System...

    For example, if a TNO is incorrectly assumed to have a mass of 3.59 × 10 20 kg based on a radius of 350 km with a density of 2 g/cm 3 but is later discovered to have a radius of only 175 km with a density of 0.5 g/cm 3, its true mass would be only 1.12 × 10 19 kg.

  9. Phobos (moon) - Wikipedia

    en.wikipedia.org/wiki/Phobos_(moon)

    With an altitude of 5,989 km (3,721 mi), Phobos orbits Mars below the synchronous orbit radius, meaning that it moves around Mars faster than Mars itself rotates. [23] Therefore, from the point of view of an observer on the surface of Mars, it rises in the west, moves comparatively rapidly across the sky (in 4 h 15 min or less) and sets in the ...