Search results
Results from the WOW.Com Content Network
where G is the universal constant of gravitation (commonly taken as G = 6.674 × 10 −11 m 3 kg −1 s −2), [10] M is the mass of Mars (most updated value: 6.41693 × 10 23 kg), [11] m is the mass of the satellite, r is the distance between Mars and the satellite, and is the angular velocity of the satellite, which is also equivalent to (T ...
Vesta (radius 262.7 ± 0.1 km), the second-largest asteroid, appears to have a differentiated interior and therefore likely was once a dwarf planet, but it is no longer very round today. [74] Pallas (radius 255.5 ± 2 km ), the third-largest asteroid, appears never to have completed differentiation and likewise has an irregular shape.
G is the universal gravitational constant (G ≈ 6.67 × 10 −11 m 3 ⋅kg −1 ⋅s −2 [4]) g = GM / d 2 is the local gravitational acceleration (or the surface gravity , when d = r ). The value GM is called the standard gravitational parameter , or μ , and is often known more accurately than either G or M separately.
On this assumption, a two-year return is not possible for some years, and for some years a delta-v kick of 0.6 to 2.7 km/s at Mars may be needed to get back to Earth. [ 10 ] NASA published the Design Reference Architecture 5.0 for Mars in 2009, advocating a 174-day transfer to Mars, which is close to Zubrin's proposed trajectory. [ 11 ]
[2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude. A conventional standard value is defined exactly as 9.80665 m/s² (about 32.1740 ft/s²).
Halley's Comet on an eccentric orbit that reaches beyond Neptune will be moving 54.6 km/s when 0.586 AU (87,700 thousand km) from the Sun, 41.5 km/s when 1 AU from the Sun (passing Earth's orbit), and roughly 1 km/s at aphelion 35 AU (5.2 billion km) from the Sun. [7] Objects passing Earth's orbit going faster than 42.1 km/s have achieved ...
For example, if a TNO is incorrectly assumed to have a mass of 3.59 × 10 20 kg based on a radius of 350 km with a density of 2 g/cm 3 but is later discovered to have a radius of only 175 km with a density of 0.5 g/cm 3, its true mass would be only 1.12 × 10 19 kg.
With an altitude of 5,989 km (3,721 mi), Phobos orbits Mars below the synchronous orbit radius, meaning that it moves around Mars faster than Mars itself rotates. [23] Therefore, from the point of view of an observer on the surface of Mars, it rises in the west, moves comparatively rapidly across the sky (in 4 h 15 min or less) and sets in the ...