Search results
Results from the WOW.Com Content Network
The Kolmogorov backward equation (KBE) (diffusion) and its adjoint sometimes known as the Kolmogorov forward equation (diffusion) are partial differential equations (PDE) that arise in the theory of continuous-time continuous-state Markov processes. Both were published by Andrey Kolmogorov in 1931. [1]
In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives.. The function is often thought of as an "unknown" that solves the equation, similar to how x is thought of as an unknown number solving, e.g., an algebraic equation like x 2 − 3x + 2 = 0.
In mathematics and its applications, particularly to phase transitions in matter, a Stefan problem is a particular kind of boundary value problem for a system of partial differential equations (PDE), in which the boundary between the phases can move with time.
A fundamental question for any PDE is the existence and uniqueness of a solution for given boundary conditions. For nonlinear equations these questions are in general very hard: for example, the hardest part of Yau's solution of the Calabi conjecture was the proof of existence for a Monge–Ampere equation.
Feller derives the equations under slightly different conditions, starting with the concept of purely discontinuous Markov process and then formulating them for more general state spaces. [5] Feller proves the existence of solutions of probabilistic character to the Kolmogorov forward equations and Kolmogorov backward equations under natural ...
The simplest example of a second-order linear elliptic PDE is the Laplace equation, in which a i,j is zero if i ≠ j and is one otherwise, and where b i = c = f = 0. The Poisson equation is a slightly more general second-order linear elliptic PDE, in which f is not required to vanish.
The general solution to the first order partial differential equation is a solution which contains an arbitrary function. But, the solution to the first order partial differential equations with as many arbitrary constants as the number of independent variables is called the complete integral.
Similarly to a final-value problem for a parabolic PDE, an initial-value problem for a backward parabolic PDE is usually not well-posed (solutions often grow unbounded in finite time, or even fail to exist). Nonetheless, these problems are important for the study of the reflection of singularities of solutions to various other PDEs.