enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Carbon-14 - Wikipedia

    en.wikipedia.org/wiki/Carbon-14

    Carbon-14 undergoes beta decay: . 14 6 C → 14 7 N + e − + ν e + 156.5 keV. By emitting an electron and an electron antineutrino, one of the neutrons in carbon-14 decays to a proton and the carbon-14 (half-life of 5700 ± 30 years [1]) decays into the stable (non-radioactive) isotope nitrogen-14.

  3. Radiocarbon dating - Wikipedia

    en.wikipedia.org/wiki/Radiocarbon_dating

    The half-life of a radioactive isotope (usually denoted by t 1/2) is a more familiar concept than the mean-life, so although the equations above are expressed in terms of the mean-life, it is more usual to quote the value of 14 C 's half-life than its mean-life. The currently accepted value for the half-life of 14 C is 5,700 ± 30 years. [21]

  4. Isotopes of carbon - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_carbon

    Carbon (6 C) has 14 known isotopes, from 8 C to 20 C as well as 22 C, of which 12 C and 13 C are stable.The longest-lived radioisotope is 14 C, with a half-life of 5.70(3) × 10 3 years. . This is also the only carbon radioisotope found in nature, as trace quantities are formed cosmogenically by the reactio

  5. Calculation of radiocarbon dates - Wikipedia

    en.wikipedia.org/wiki/Calculation_of_radiocarbon...

    The next step, to correct for fractionation, can be done using either the 14 C / 12 C ratio or the 14 C / 13 C ratio, and also depends on which of the two possible standards was measured: HOxI or HoxII. R' std is then R' HOxI or R' HOxII, depending on which standard was used. The four possible equations are as follows. First, if the 14 C / 12

  6. Radiometric dating - Wikipedia

    en.wikipedia.org/wiki/Radiometric_dating

    For instance, carbon-14 has a half-life of 5,730 years. After an organism has been dead for 60,000 years, so little carbon-14 is left that accurate dating cannot be established. On the other hand, the concentration of carbon-14 falls off so steeply that the age of relatively young remains can be determined precisely to within a few decades. [13]

  7. Half-life - Wikipedia

    en.wikipedia.org/wiki/Half-life

    In this situation it is generally uncommon to talk about half-life in the first place, but sometimes people will describe the decay in terms of its "first half-life", "second half-life", etc., where the first half-life is defined as the time required for decay from the initial value to 50%, the second half-life is from 50% to 25%, and so on.

  8. Beta decay - Wikipedia

    en.wikipedia.org/wiki/Beta_decay

    An example of electron emission (β − decay) is the decay of carbon-14 into nitrogen-14 with a half-life of about 5,730 years: 14 6 C → 14 7 N + e − + ν e. In this form of decay, the original element becomes a new chemical element in a process known as nuclear transmutation. This new element has an unchanged mass number A, but an atomic ...

  9. Valley of stability - Wikipedia

    en.wikipedia.org/wiki/Valley_of_stability

    According to Byrne, [3] stable nuclides are defined as those having a half-life greater than 10 18 years, and there are many combinations of protons and neutrons that form nuclides that are unstable. A common example of an unstable nuclide is carbon-14 that decays by beta decay into nitrogen-14 with a half-life of about 5,730 years: 14 6 C → ...