Search results
Results from the WOW.Com Content Network
The binding constant, or affinity constant/association constant, is a special case of the equilibrium constant K, [1] and is the inverse of the dissociation constant. [2] It is associated with the binding and unbinding reaction of receptor (R) and ligand (L) molecules, which is formalized as: R + L ⇌ RL
Boltzmann constant: The Boltzmann constant, k, is one of seven fixed constants defining the International System of Units, the SI, with k = 1.380 649 x 10 −23 J K −1.The Boltzmann constant is a proportionality constant between the quantities temperature (with unit kelvin) and energy (with unit joule).
Integral contour for deriving Kramers–Kronig relations. The proof begins with an application of Cauchy's residue theorem for complex integration. Given any analytic function in the closed upper half-plane, the function ′ (′) / (′), where is real, is analytic in the (open) upper half-plane.
For example, if a macromolecule M has three binding sites, K′ 1 describes a ligand being bound to any of the three binding sites. In this example, K′ 2 describes two molecules being bound and K′ 3 three molecules being bound to the macromolecule. The microscopic or individual dissociation constant describes the equilibrium of ligands ...
This would thus allow the calculation of K −1. By plotting a graph of ε HG versus K −1, the result would be a linear relationship. When the procedure is repeated for a series of concentrations and plotted on the same graph, the lines intersect at a point giving the optimum value of ε HG and K −1.
Although the K a /K s ratio is a good indicator of selective pressure at the sequence level, evolutionary change can often take place in the regulatory region of a gene which affects the level, timing or location of gene expression. K a /K s analysis will not detect such change. It will only calculate selective pressure within protein coding ...
In coordination chemistry, a stability constant (also called formation constant or binding constant) is an equilibrium constant for the formation of a complex in solution. It is a measure of the strength of the interaction between the reagents that come together to form the complex.
Nitric acid, with a pK value of around −1.7, behaves as a strong acid in aqueous solutions with a pH greater than 1. [23] At lower pH values it behaves as a weak acid. pK a values for strong acids have been estimated by theoretical means. [24] For example, the pK a value of aqueous HCl has been estimated as −9.3.