Search results
Results from the WOW.Com Content Network
For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix. The resulting matrix, known as the matrix product, has the number of rows of the first and the number of columns of the second matrix. The product of matrices A and B is denoted as AB. [1]
The conjugate gradient method can be applied to an arbitrary n-by-m matrix by applying it to normal equations A T A and right-hand side vector A T b, since A T A is a symmetric positive-semidefinite matrix for any A. The result is conjugate gradient on the normal equations (CGN or CGNR). A T Ax = A T b
If a 2 x 2 real matrix has zero trace, its square is a diagonal matrix. The trace of a 2 × 2 complex matrix is used to classify Möbius transformations. First, the matrix is normalized to make its determinant equal to one. Then, if the square of the trace is 4, the corresponding transformation is parabolic.
A square matrix is a matrix with the same number of rows and columns. [5] An n-by-n matrix is known as a square matrix of order n. Any two square matrices of the same order can be added and multiplied. The entries a ii form the main diagonal of a square matrix. They lie on the imaginary line that runs from the top left corner to the bottom ...
The linear least squares problem is to find the x that minimizes ‖ Ax − b ‖, which is equivalent to projecting b to the subspace spanned by the columns of A. Assuming the columns of A (and hence R) are independent, the projection solution is found from A T Ax = A T b. Now A T A is square (n × n) and invertible, and also equal to R T R.
A variant of Gaussian elimination called Gauss–Jordan elimination can be used for finding the inverse of a matrix, if it exists. If A is an n × n square matrix, then one can use row reduction to compute its inverse matrix, if it exists. First, the n × n identity matrix is augmented to the right of A, forming an n × 2n block matrix [A | I]
If this is the case, then the matrix B is uniquely determined by A, and is called the (multiplicative) inverse of A, denoted by A −1. Matrix inversion is the process of finding the matrix which when multiplied by the original matrix gives the identity matrix. [2] Over a field, a square matrix that is not invertible is called singular or ...
Given two square complex matrices A and B, of size n and m, and a matrix C of size n by m, then one can ask when the following two square matrices of size n + m are similar to each other: [] and []. The answer is that these two matrices are similar exactly when there exists a matrix X such that AX − XB = C .