Search results
Results from the WOW.Com Content Network
The register width of a processor determines the range of values that can be represented in its registers. Though the vast majority of computers can perform multiple-precision arithmetic on operands in memory, allowing numbers to be arbitrarily long and overflow to be avoided, the register width limits the sizes of numbers that can be operated on (e.g., added or subtracted) using a single ...
Saturation arithmetic also enables overflow of additions and multiplications to be detected consistently without an overflow bit or excessive computation, by simple comparison with the maximum or minimum value (provided the datum is not permitted to take on these values).
The overflow flag is thus set when the most significant bit (here considered the sign bit) is changed by adding two numbers with the same sign (or subtracting two numbers with opposite signs). Overflow cannot occur when the sign of two addition operands are different (or the sign of two subtraction operands are the same). [1]
Two's complement is the most common method of representing signed (positive, negative, and zero) integers on computers, [1] and more generally, fixed point binary values. Two's complement uses the binary digit with the greatest value as the sign to indicate whether the binary number is positive or negative; when the most significant bit is 1 the number is signed as negative and when the most ...
Computers typically use binary arithmetic, but to make the example easier to read, it will be given in decimal. Suppose we are using six-digit decimal floating-point arithmetic, sum has attained the value 10000.0, and the next two values of input[i] are 3.14159 and 2.71828. The exact result is 10005.85987, which rounds to 10005.9.
In addition and subtraction, the result may require one bit more than the operands. In multiplication of two unsigned integers with m and n bits, the result may have m+n bits. In case of overflow, the high-order bits are usually lost, as the un-scaled integer gets reduced modulo 2 n where n is the size of the storage area. The sign bit, in ...
Arbitrary-precision arithmetic can also be used to avoid overflow, which is an inherent limitation of fixed-precision arithmetic. Similar to an automobile's odometer display which may change from 99999 to 00000, a fixed-precision integer may exhibit wraparound if numbers grow too large to represent at the fixed level of precision.
When the data word is divided into 16-bit blocks, two 16-bit sums result and are combined into a 32-bit Fletcher checksum. Usually, the second sum will be multiplied by 2 16 and added to the simple checksum, effectively stacking the sums side-by-side in a 32-bit word with the simple checksum at the least significant end. This algorithm is then ...