enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Density of air - Wikipedia

    en.wikipedia.org/wiki/Density_of_air

    At IUPAC standard temperature and pressure (0 °C and 100 kPa), dry air has a density of approximately 1.2754 kg/m 3. At 20 °C and 101.325 kPa, dry air has a density of 1.2041 kg/m 3. At 70 °F and 14.696 psi, dry air has a density of 0.074887 lb/ft 3.

  3. List of conversion factors - Wikipedia

    en.wikipedia.org/wiki/List_of_conversion_factors

    List of conversion factors. ... × 10 −27 kg ... 1 ⁄ 100 of the energy required to warm one gram of air-free water from 0 °C to 100 °C at a pressure of 1 atm

  4. Useful conversions and formulas for air dispersion modeling

    en.wikipedia.org/wiki/Useful_conversions_and...

    Here are the conversion factors for those various expressions of wind speed: 1 m/s = 2.237 statute mile/h = 1.944 knots 1 knot = 1.151 statute mile/h = 0.514 m/s 1 statute mile/h = 0.869 knots = 0.447 m/s. Note: 1 statute mile = 5,280 feet = 1,609 meters

  5. gc (engineering) - Wikipedia

    en.wikipedia.org/wiki/Gc_(engineering)

    In engineering and physics, g c is a unit conversion factor used to convert mass to force or vice versa. [1] It is defined as = In unit systems where force is a derived unit, like in SI units, g c is equal to 1.

  6. Natural units - Wikipedia

    en.wikipedia.org/wiki/Natural_units

    In physics, natural unit systems are measurement systems for which selected physical constants have been set to 1 through nondimensionalization of physical units.For example, the speed of light c may be set to 1, and it may then be omitted, equating mass and energy directly E = m rather than using c as a conversion factor in the typical mass–energy equivalence equation E = mc 2.

  7. Gas constant - Wikipedia

    en.wikipedia.org/wiki/Gas_constant

    In case of air, using the perfect gas law and the standard sea-level conditions (SSL) (air density ρ 0 = 1.225 kg/m 3, temperature T 0 = 288.15 K and pressure p 0 = 101 325 Pa), we have that R air = P 0 /(ρ 0 T 0) = 287.052 874 247 J·kg −1 ·K −1. Then the molar mass of air is computed by M 0 = R/R air = 28.964 917 g/mol. [11]

  8. Mass versus weight - Wikipedia

    en.wikipedia.org/wiki/Mass_versus_weight

    Conventional mass is defined as follows: "For a mass at 20 °C, 'conventional mass' is the mass of a reference standard of density 8,000 kg/m 3 which it balances in air with a density of 1.2 kg/m 3." The effect is a small one, 150 ppm for stainless steel mass standards, but the appropriate corrections are made during the manufacture of all ...

  9. Specific weight - Wikipedia

    en.wikipedia.org/wiki/Specific_weight

    The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...