Search results
Results from the WOW.Com Content Network
I 0 is the reference sound intensity; 1 Np = 1 is the neper; 1 B = 1 / 2 ln(10) is the bel; 1 dB = 1 / 20 ln(10) is the decibel. The commonly used reference sound intensity in air is [5] = /. being approximately the lowest sound intensity hearable by an undamaged human ear under room conditions.
If the sound pressure p 1 is measured at a distance r 1 from the centre of the sphere, the sound pressure p 2 at another position r 2 can be calculated: =. The inverse-proportional law for sound pressure comes from the inverse-square law for sound intensity : I ( r ) ∝ 1 r 2 . {\displaystyle I(r)\propto {\frac {1}{r^{2}}}.}
The use of sound intensity rather than sound pressure to determine sound power means that measurements can be made in situ, with steady background noise and in the near field of machines. The sound power is the average normal intensity over a surface enclosing the source, multiplied by the surface area. [1]
For the same numerical value of SPL, the intensity of a plane wave (power per unit area, proportional to mean square sound pressure divided by acoustic impedance) in air is about 20 2 ×3600 = 1 440 000 times higher than in water. Similarly, the intensity is about the same if the SPL is 61.6 dB higher in the water.
An equal-loudness contour is a measure of sound pressure level, over the frequency spectrum, for which a listener perceives a constant loudness when presented with pure steady tones. [1] The unit of measurement for loudness levels is the phon and is arrived at by reference to equal-loudness contours. By definition, two sine waves of differing ...
In acoustics, the sound pressure of a spherical wavefront radiating from a point source decreases by 50% as the distance r is doubled; measured in dB, the decrease is still 6.02 dB, since dB represents an intensity ratio. The pressure ratio (as opposed to power ratio) is not inverse-square, but is inverse-proportional (inverse distance law):
p is the acoustic pressure in the medium; ρ is the volumetric mass density of the medium; c is the speed of the sound waves traveling in the medium; δ is the particle displacement; x is the space variable along the direction of propagation of the sound waves. This equation is valid both for fluids and solids. In fluids, ρc 2 = K (K stands ...
The horizontal axis shows frequency in Hertz. In acoustics, loudness is the subjective perception of sound pressure.More formally, it is defined as the "attribute of auditory sensation in terms of which sounds can be ordered on a scale extending from quiet to loud". [1]