enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Perimeter - Wikipedia

    en.wikipedia.org/wiki/Perimeter

    A perimeter is a closed path that encompasses, surrounds, or outlines either a two dimensional shape or a one-dimensional length. The perimeter of a circle or an ellipse is called its circumference. Calculating the perimeter has several practical applications. A calculated perimeter is the length of fence required to surround a yard or garden.

  3. Area of a circle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_circle

    The area of a regular polygon is half its perimeter multiplied by the distance from its center to its sides, and because the sequence tends to a circle, the corresponding formula–that the area is half the circumference times the radius–namely, A = ⁠ 1 / 2 ⁠ × 2πr × r, holds for a circle.

  4. History of geometry - Wikipedia

    en.wikipedia.org/wiki/History_of_geometry

    The ancient Egyptians knew that they could approximate the area of a circle as follows: [2] Area of Circle ≈ [ (Diameter) x 8/9 ] 2. Problem 50 of the Ahmes papyrus uses these methods to calculate the area of a circle, according to a rule that the area is equal to the square of 8/9 of the circle's diameter. This assumes that π is 4×(8/9) 2 ...

  5. Area - Wikipedia

    en.wikipedia.org/wiki/Area

    The question of the filling area of the Riemannian circle remains open. [34] The circle has the largest area of any two-dimensional object having the same perimeter. A cyclic polygon (one inscribed in a circle) has the largest area of any polygon with a given number of sides of the same lengths.

  6. Geometry - Wikipedia

    en.wikipedia.org/wiki/Geometry

    Chapter 12 also included a formula for the area of a cyclic quadrilateral (a generalization of Heron's formula), as well as a complete description of rational triangles (i.e. triangles with rational sides and rational areas). [23] In the Middle Ages, mathematics in medieval Islam contributed to the development of geometry, especially algebraic ...

  7. Gauss circle problem - Wikipedia

    en.wikipedia.org/wiki/Gauss_circle_problem

    This problem is known as the primitive circle problem, as it involves searching for primitive solutions to the original circle problem. [9] It can be intuitively understood as the question of how many trees within a distance of r are visible in the Euclid's orchard , standing in the origin.

  8. Brahmagupta's formula - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta's_formula

    giving the basic form of Brahmagupta's formula. It follows from the latter equation that the area of a cyclic quadrilateral is the maximum possible area for any quadrilateral with the given side lengths. A related formula, which was proved by Coolidge, also gives the area of a general convex

  9. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    The area of a hyperbolic triangle is given by its defect in radians multiplied by R 2, which is also true for all convex hyperbolic polygons. [2] Therefore all hyperbolic triangles have an area less than or equal to R 2 π. The area of a hyperbolic ideal triangle in which all three angles are 0° is equal to this maximum.