Search results
Results from the WOW.Com Content Network
It solved a more constrained form of Hilbert's thirteenth problem, so the original Hilbert's thirteenth problem is a corollary. [ 3 ] [ 4 ] [ 5 ] In a sense, they showed that the only true continuous multivariate function is the sum, since every other continuous function can be written using univariate continuous functions and summing.
Superposition is refutation complete—given unlimited resources and a fair derivation strategy, from any unsatisfiable clause set a contradiction will eventually be derived. Many (state-of-the-art) theorem provers for first-order logic are based on superposition (e.g. the E equational theorem prover ), although only a few implement the pure ...
Hilbert's thirteenth problem is one of the 23 Hilbert problems set out in a celebrated list compiled in 1900 by David Hilbert. It entails proving whether a solution exists for all 7th-degree equations using algebraic (variant: continuous ) functions of two arguments .
In quantum mechanics, the measurement problem is the problem of definite outcomes: quantum systems have superpositions but quantum measurements only give one definite result. [ 1 ] [ 2 ] The wave function in quantum mechanics evolves deterministically according to the Schrödinger equation as a linear superposition of different states.
is the linear combination of vectors and such that = +. In mathematics, a linear combination or superposition is an expression constructed from a set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of x and y would be any expression of the form ax + by, where a and b are constants).
The quantum wave equation can be solved using functions of position, (), or using functions of momentum, () and consequently the superposition of momentum functions are also solutions: = + The position and momentum solutions are related by a linear transformation, a Fourier transformation. This transformation is itself a quantum superposition ...
Thus, on the official website of the Clay Mathematics Institute, these seven problems are officially called the Millennium Problems. To date, the only Millennium Prize problem to have been solved is the Poincaré conjecture. The Clay Institute awarded the monetary prize to Russian mathematician Grigori Perelman in 2010.
A quantum algorithm for solving this problem exists. This algorithm is, like the factor-finding algorithm, due to Peter Shor and both are implemented by creating a superposition through using Hadamard gates, followed by implementing f {\displaystyle f} as a quantum transform, followed finally by a quantum Fourier transform. [ 3 ]